
Runtimes (application facing)
QUESTIONS XPRESS TG X-Stack DEGAS D-TEC DynAX X-TUNE GVR CORVETTE SLEEC PIPER

PI Ron Brightwell Shekhar Borkar Katherine Yelick Daniel Quinlan Guang Gao Mary Hall Andrew Chien Koushik Sen Milind Kulkarni Martin Schulz
What policies and/or mechanisms will your runtime use to 
schedule code and place data for 100M objects (executing 
code, data elements, etc.) in a scalable fashion?

A hierarchical representation of logical contexts and tasks 
(processes and compute complexes) provides semantic 
representations of relative locality for placement of data objects 
and the tasks that are performed on them. Where data is widely 
distributed, they can be organized on separate processes 
distributed across multiple nodes with methods that allow actual 
work to be performed near the data. Research is exploring the 
allocation of resources by the LXK OS to the HPX runtime 
system and the policies to be implemented including 
programming interface semantics.

Open Community Runtime (OCR) will optimize for data-
movement scalability. Our programming model divides an 
application into event-driven tasks with explicit data-
dependences. Our runtime uses of this to schedule code close 
to its data or move the data close to the code. Scalability will be 
achieved through hierarchical task-stealing favoring locality.

The DEGAS runtime uses one-sided communication (put, get, 
active messages, atomics, and remote enqueue of tasks) to 
place data and work across a large-scale machine. Within a 
node there are currently two scheduling approaches being 
pursued. One (under HCLib/Habanero-C) is built on OCR and 
uses a dynamic task scheduler; it is being evaluated to 
determine the need for locality control within the node; the 
second is derived from the UPC runtime and has both a fixed 
set of locality-aware threads tied to cores (or hardware threads 
or NUMA domains -- it's an abstraction that can be used a 
various machine levels), augmented with voluntary task 
scheduling for both locality and remotely generated dynamic 
tasks. A global task stealing scheduler is also part of the 
DEGAS plan and exists in prototype form; as with dynamic 
tasking, it is to be used on-demand for applications that are not 
naturally load balanced (e.g., divide-and-conquer problems with 
irregular trees).

(D-TEC) The APGAS (Asynchronous Partitioned Global 
Address Space) runtime uses a work-stealing scheduler to 
dynamically schedule tasks within a node. We are introducing 
areas to enable finer-grained locality and scheduling control 
within a node (Place). By design the runtime does not directly 
address automatic cross-node data placement. The APGAS 
runtime/programming model does provide primitive 
mechanisms (Places and Areas; at/async/finish) that allow 
application frameworks to productively implement data 
placement and cross-node scheduling frameworks on top of the 
runtime.

The SWift Adaptive Runtime Machine (SWARM) has a "locale" 
hierarchy, which roughly mirrors the hardware architecture 
hierarchy. Each locale has a set of local scheduler queues, 
allowing distributed and scalable scheduling. Data allocation 
and task/data migration are expressed to ensure proper 
parallelism around the conjunction. SWARM will rely on a single-
assignment policy to prevent the need for globally coordinated 
checkout or write-back operations.

The compiler for X-TUNE must generate code with hierarchical 
threading, and will rely on the run-time to manage that threading 
efficiently. Point-to-point synchronization between threads may 
be more efficient than barriers to allow more dynamic behavior 
of the threads.

(GVR) will use performance information for varied memory and 
storage types (DRAM, NVRAM, SSD, Disk), resource failure 
rate and prediction, redundancy in data encoding, existing 
version data copies and their location, as well as 
communication costs to place data. GVR does not include code 
scheduling mechanisms.

(CORVETTE) SLEEC does not have a true runtime component, except insofar 
as we are developing single-node runtimes to, e.g., manage 
data movement between cores and accelerators. We also 
perform small-scale inspector/executor-style scheduling for 
applications. However, we expect to rely on other systems for 
our large-scale runtime needs.

N/A

What features will allow your runtime to dynamically adapt 
the schedule and placement for 100K sockets to improve 
the metrics of code-data affinity, power consumption, 
migration cost and resiliency?

The HPX/LXK System software architecture (also known as the 
“OpenX Architecture” integrates a closed-loop introspection 
component comprising the APEX and RCR components within 
the runtime and OS respectively. Code-data affinity is supported 
by multiple mechanisms. Intra-compute complex (thread) 
function keeps all private or local data in the same locality. 
Parcels move work to the data when preferred although 
supports data access and gathers as appropriate. Processes 
keep shared data organized within a single logical context that 
can be spread across multiple localities. The effective reduction 
of latency effects also reduces data movement energy. For 
resiliency reconfiguration and recovery data migration is 
enabled by logical active global address space. Research is 
being performed to address these issues; some under other 
funding.

If the hardware supports it, OCR will monitor performance and 
power counters to adapt its scheduling and data-placement to 
better utilize the machine.

(DEGAS) For resilience, the DEGAS runtime uses customizable 
application and system-level policies to trade-off the storage 
costs associated with resilient processing against the expected 
failure rate, with an objective of optimizing the expected forward 
progress in an application against expected recovery and 
preservation times. The Containment Domain hierarchy allows 
the storage hierarchy of the system to be mapped to a 
hierarchical resilience structure. Process migration for GAS 
applications is planned, and we are investigating live migration 
techniques to move work around the system without stopping 
the application, or individual processes, from running during 
migration. The UPC language makes memory affinity explicit for 
programmers, and UPC supports teams as a construct to 
manage communications locality.

Automatic cross-socket migration and placement is not a topic 
we are actively exploring at the APGAS runtime level.

The locale hierarchy, runtime awareness of high-level data 
types, and support for task affinities to certain hardware will 
allow the runtime to make good placement decisions and move 
tasks and data around the system as needed to minimize the 
overall energy costs and improve efficiency. The use of a single-
assignment data model and hints associated with particular 
tasks or data allows the runtime to establish good code-data 
affinity and energy efficiency.

Autotuning is the main mechanism that allows our project to 
adapt to execution context. In the long term, this autotuning 
must be performed during program execution to support 
dynamically-varying execution contexts.

(GVR) creates multiple-versions (snapshots) of globally-
accessible data arrays as the primary basis or resilience. GVR 
creates an independent stream for each resilient data array, 
allowing it to be independently versioned, recovered, and 
managed - different from checkpointing -- and enabling a wealth 
of efficiency optimizations and flexible control by the application. 
Beneath that, GVR will optimize location, encoding, version 
creation and deletion, to maximize compute performance, 
resilience coverage, energy efficiency, and even wear-out 
lifetime of non-volatile storage devices (NVRAM).

(CORVETTE) N/A N/A

How will the runtime manage resources (compute, 
memory, power, bandwidth) for 100K sockets to meet a 
power, energy and performance objective?

The HPX runtime system maintains an abstraction of global 
data and compute complexes (threads) within the context of the 
ParalleX process hierarchy and engages in a bi-directional 
protocol with the LXK lightweight kernel to acquire and employ 
memory blocks and OS thread executables. As the OS 
manages multiple job program resource conflicts and the HPX 
runtime manages the intra-job task requirements and priorities, 
the two work together in dialog to balance the complex 
tradeoffs. Power imposes upper constraints at the node 
(locality) and socket level limited by the OS. Energy usage is 
governed by the ParalleX Side-Path Energy Suppression 
methodology that (attempts) to determine critical path of 
execution to which highest power is applied and reduces energy 
usage to the non-critical (side-path) work to the degree that the 
critical path does not change thus minimizing total energy with 
shortest time to completion. This strategy addresses scaling of 
both energy and performance objectives.

OCR will manage resources based on the application's needs 
and the power budget and turn off or scale back unneeded 
resources.

The DEGAS energy goals are primarily met by avoiding data 
movement both within and between nodes. “Communication 
avoidance” is a primary goal of the project in language, 
compilers and runtimes and has proven ties to energy use and 
performance. Dynamic energy management will be handled by 
the dynamic tasking on node and global task stealing between 
nodes, which as noted above is a voluntary and therefore 
“tunable” part of the runtime.

Using techniques developed in the SEEC runtime, the runtime 
could adaptively monitor application progress and 
increase/decrease resource utilization to minimize power 
consumption under the constraints of meeting application 
performance targets. This requires the application to be 
modified to report an abstract notion of progress to the runtime, 
the system software and hardware to provide the necessary 
monitoring APIs, and for the system software and hardware to 
provide the ability to dynamically adjust power consumption at 
the cost of reduced performance/reliability.

The runtime software will allocate only as many processors and 
as much memory as an application needs for efficient 
execution. It should be possible to adjust these parameters 
according to the real time or energy efficiency requirements 
indicated by the system user. Past power consumption can 
either be read out from supporting hardware or modeled based 
on software characteristics. This data, in conjunction with a 
system- or user-designated power budgets and hints associated 
with particular tasks and objects, will help the runtime decide 
when to focus work and data in a smaller area, allowing it to 
clock- or power-gate the remainder of the hardware, or when to 
spread work out across more of the system, requiring a higher 
power usage to induce a higher throughput. If hardware 
supports frequency scaling, this can be used to more finely tune 
power usage in runtime-managed components.

Autotuning can be used to support multiple objectives, as long 
as the tradeoff space and the goals of the developers are well 
understood. The question is really how much performance may 
be sacrificed to meet other optimization objectives.

(GVR) the optimization for resilience embodied in GVR - and its 
application partnership - can be constrained by power, energy 
and performance limits. The philosophy of GVR as a library is to 
adapt to these as external constraints, and is therefore 
compatible with a variety of runtime and programming system 
tools.

(CORVETTE) N/A N/A

The runtime software will operate in all processor cores of the 
system, and will divide the system into executive and worker 
cores, with a hierarchy of executive cores associated with each 
non-leaf locale, managing each other and the workers. This 
helps localize work and data, but allows load to spill out into 
wider regions if a narrower region is flooded at any point. If the 
locale hierarchy is aligned with the hardware memory and 
communications hierarchy, it also helps localize the effects of 
any hardware failure.

Detection of a failure that impacts correctness of runtime 
operation will result in the processor core, memory unit, or 
subsystem being taken out of service and the same operation 
being retried elsewhere. We will use containment domains to 
establish strict task boundaries, and can use earlier versions of 
data for resumption of failed tasks. Because we use a single-
assignment model, the chance of overwriting old data from 
which recovery would otherwise be possible is eliminated and 
the extent of the effects of any failure can be limited.

What is the efficiency of the runtime? Specifically, how 
much impact does the runtime have on a) the total 
execution time of the application and b) resources taken 
from algorithmic computations? What are your plans to 
maximize efficiency? How will runtime overhead scale to 
100K sockets?

The HPX runtime is event driven and stays out of the way of the 
user codes executing intra-thread for purposes of efficiency. 
However, inter-thread there are a number of overhead actions 
that impact efficiency and impose a lower bound on thread 
granularity, which limits scalability for fixed size workloads. OS 
overhead (LXK) is fixed on a per node basis and therefore 
scalable. HPX process calls across nodes (conceptually 
millions) employ symmetric semantics (synchronous versus 
asynchronous) for portability, parcels for message-driven 
computing in combination with local control objects to manage 
asynchrony including mitigation of latency effects, and active 
global address space to handle remote data load and stores. 
Research will determine the scaling factors for these as well as 
the time and energy efficiencies that may be achieved.

OCR code runs on cores that are physically separate from 
those for user code. Our goal is to have enough “runtime” cores 
that runtime overhead is completely masked by the application 
code. As machine size increases, more runtime cores will be 
needed to handle higher-level functions and global 
optimizations but this will increase very slowly.

(DEGAS) As noted above, we see no major barriers to scaling 
to arbitrary machine sizes, but expect resource management at 
this scale to require additional research and engineering. The 
large number of cores on a node accessing a shared 
communication resource is one such problem. The dynamic 
tasking runtimes have more overhead, but we are working to 
minimize the difference in performance between the static and 
dynamic case. In our experience the major problem is lose of 
locality from the dynamic case, which we are addressing in 
various ways, including an “inspector-executor” style scheduler.

Running at 55k cores on typical kernel benchmarks, the APGAS 
runtime has been demonstrated to have very low overheads. As 
a general design principle, the runtime overheads should be 
expected to be proportional to the frequency with which the 
application requests services from the runtime.

We have focused very heavily on minimizing the amount of 
inline work, allowing the application to run un-hindered, and 
minimizing the hardware resources required for the runtime-
internal threads. Overall, we anticipate that the processing 
overhead per core is expected to be essentially constant 
regardless of system size, with the exception of global 
operations like barriers and reductions which may require 
additional time scaling with the logarithm of the system size. 
Memory usage for thread descriptors and stacks will be linear 
with the number of cores, although temporary linearithmic (i.e., 
O(n lg n) for n coordinating agents) memory blocks may be 
needed to manage global operations. Very little static-/runtime-
bound data is required beyond that, aside from what's required 
for basic interfacing with the underlying platform.

This is not applicable to X-TUNE as we rely on a run-time 
system provided by others.

(GVR) seeks to minimize resilience overhead. We have 
performed experiments with numerous applications (ddcMD, 
OpenMC, PCG, GMRES, and mini-apps such miniFE, miniMD) 
that demonstrate overheads of less than 1% runtime without 
any special hardware support. With novel emerging features 
such as storage-class memory (integrated NVRAM), we expect 
this overhead to be even smaller.

(CORVETTE) Because SLEEC focuses on small-scale runtimes that are 
directly integrated with application code, we expect our runtime 
overheads to be negligible and, essentially, independent of 
scale (because scaling will be provided by other runtime 
systems.

N/A

Do you support isolation of the runtime code from the user 
code to avoid violations and contamination?

The ParalleX process construct and hierarchy with capabilities 
addressing separates runtime functions from user functions. 
The global addressing permits runtime system instances to 
manipulate user “compute complexes” (e.g., threads) as first 
class objects. Independent runtime instances isolates multiple 
user applications sharing any particular localities (nodes). 
Research is exploring the costs and completeness of these 
protection mechanisms.

The majority of the runtime code runs on cores that are 
physically separate from the ones on which user code is 
running. Although we are currently considering a model where 
all cores can touch data everywhere else, our model will support 
possible hardware restriction (user cores cannot touch data in 
runtime cores).

(DEGAS) The runtime code is separate from user code, but 
there is no enforced isolation.

We are not directly addressing this issue. The design point we 
are pursuing is that there will be different instances of the 
APGAS runtime for different programs and isolation will be 
provided by other layers of the stack.

Complete isolation depends heavily on hardware support. For 
architectures which support it, such as Traleika Glacier, 
SWARM isolates resources rather well, with only a thin shim 
layer of SWARM residing on the application cores. When 
possible, runtime decisions happen on executive cores, which 
have visibility and control over worker cores, but not vice-versa. 
When using hardware that does not support this kind of work 
division, it may not be possible to prevent 
violation/contamination over application cores. (When features 
like segmentation or virtual memory are present, these can 
potentially be used to enforce separation between the runtime 
and application code, but doing so may impose an enormous 
overhead---comparable to placing the runtime in the OS kernel--
-and this will likely not be worth the enormous performance hit 
that would be taken.)

We rely on run-time systems provided by others, and would 
simply invoke the run-time.

(GVR) supports use of operating system or other runtime 
mechanisms for this isolation, but provides no mechanisms of 
its own. GVR's design and implementation supports flexible 
recovery from detected violations or contamination.

(CORVETTE) SLEEC's runtimes are application/domain-specific and hence 
intended to closely couple with the application code.

(PIPER)

What specific hardware features do you require for proper 
or efficient runtime operation (atomics, DMA, F/E bits, 
etc.)?

There are no absolute requirements for proper operation of the 
HPX runtime system beyond those found on conventional 
parallel and distributed systems. These include compound 
atomic operations, message exchange between nodes, 
scheduling of threads and their precise interrupts, and local 
virtual address translation. However, there are additional 
features that may be incorporated in the future that would 
dramatically reduce overheads, mitigate latencies, increase 
parallelism, and circumvent hotspots. Among such mechanisms 
for efficient runtime operation are hardware support for 1) user 
lightweight thread creation, termination, and context switching 
(including preemption), 2) global virtual address translation, 3) 
‘struct’ processing for simultaneous multi-word processing (for 
local control objects among others), message driven 
computation, and combined DMA plus synchronization. 
Research will ascertain, evaluate, and analyze to degree of 
operational improvements that may be derived from such 
hardware support.

OCR requires hardware to support some form of atomic locking. 
Additional HW features identified for increased efficiency: 1) 
Remote atomics for cheaper manipulation of far-away memory; 
2) Heterogeneity to taylor "user" cores for user code and 
"runtime" cores for runtime code (no FP for example) 3) Fast 
runtime core-to-core communication to allow the runtime to 
communicate efficiently without impacting user code 4) 
Asynchronous data movement (DMA engines) 5) HW 
monitoring to allow introspection and adaptation; 6) knowledge 
of HW structure (memory costs, network links available, etc) 
enabling more efficient scheduling and placement.

(DEGAS) For efficient processing, remote DMA operations and 
low computational overhead queue pair access are essential, as 
is interrupt-free message processing. Loose ordering 
restrictions on message and RDMA processing are important, 
as is the ability to issue relatively large numbers (hundreds) of 
outstanding remote memory operations. Registration and 
pinning of RDMA memory often remain issues for us, and we 
would like both low-overhead memory registration techniques 
and the ability to have large numbers of registered memory 
areas, as we have encountered difficulties due to limitations on 
the number of (distinct) memory regions that can be accessed 
by an RDMA-capable device.

Nothing beyond those found already found on conventional 
parallel and distributed systems. The APGAS runtime has been 
extended to exploit unique hardware capabilities of particular 
machines (eg Torrent exploitation in Power775) and if unique 
hardware capabilities are available on future systems the 
APGAS runtime could be extended to exploit them.

Our fundamental requirements are atomic operations 
(preferably at least compare-and-swap), memory fences, 
RDMA, power/clock/frequency management, and hardware 
failure event notification. Optionally, F/E bits, and explicit 
associative memories would result in additional efficiency 
improvements. If a transparent data caches is available on each 
core, then features like hardware transactional memory can 
greatly speed up operations on shared data structures.

Autotuning relies on accurate hardware monitoring to provide 
measurements used to calculate optimization objectives.

(GVR) is designed for portability, and should be able to run on 
systems ranging from current-day petascale to CORAL to 
Exascale systems. However, hardware features such as 
integrated NVRAM, efficient change tracking, data 
compression, efficient and reliable RMA/RDMA, collectives, etc. 
will further increase the efficiency of GVR.

(CORVETTE) N/A Yes, that should be the case.

The SWARM runtime depends on isolation features in the 
hardware, which vary from one hardware platform to the next. 
Where possible, SWARM will make use of hardware isolation 
features to protect multiple programs from each other. If a 
single instance of the SWARM runtime software is in control of 
all of the running programs which must be isolated from each 
other, it is both well-suited and in a perfect position to ensure 
that no program starves others for resources. If there is a higher-
level OS or executive managing multiple SWARM instances, 
there may need to be higher-level signaling to prevent resource 
starvation.
When distinct applications must be run within the same runtime, 
hardware features will be required to prevent the applications 
from reading from or writing into each other's state; SWARM 
cannot provide this guarantee on its own. However, instituting a 
single-assignment policy helps prevent most applications from 
butting up against the hardware protection mechanisms 
accidentally---doing so constitutes programmer error with 
regard to the application. If distinct applications have distinct 
runtime instances, then SWARM has little to no control its client 
applications' attempts to read/write things they shouldn't, and so 
must rely entirely on hardware mechanisms and lower software 
layers for protection.

(GVR) Each program would have a unique instance of the GVR 
library, and as such create a version store that includes several 
independent streams of global-view structures (tuned for 
efficiency and resilience). However, the version stores do not 
interact with each other, so there is no interference. Access 
control to version stores is enforced by the operating system.

(CORVETTE) N/A N/A

(GVR) is based on a decentralized architecture that replicates 
metadata across the machine, and creates redundant data 
versions for application resiliency. The GVR architecture will 
exploit replicated metadata storage, and a stateless recovery 
architecture to enable resilience to scale from application thru 
GVR implementation resiliences as well as from petascale to 
exascale systems.

(CORVETTE) SLEEC's runtimes are intended to operate within the scope of a 
single node, or at a small scale. We rely on other runtimes to 
provide higher levels of the hierarchy.

The PIPER concepts includes performance and correctness 
data collection across the entire system software stack - this 
does require runtime support to cleanly and scalably aggregate 
and process data. This can be combined with work in the 
Visualization/Data Area.

What is your model for execution of multiple different 
programs (ie: a single mention would be doing more than 
one thing) in terms of division, isolation, containment and 
protection?

The HPX runtime system supports the ParalleX processes, 
which serve as logical contexts and are referenced through a 
hierarchical namespace. The global root process of the entire 
system provides global naming. Each program has a program 
root process that contains the instances of the dedicated 
runtime kernel and the “main” process of the user applications. 
The process boundaries incorporate a form of capabilities 
based addressing for protections. Programs are logically 
separate and isolated although can interact through the upper 
hierarchy of the process stack. Nonetheless, programs may 
share physical resources (localities). The underlying OS 
manages the protections of the virtual address space.

Our programming model splits user code into small event-
driven tasks (EDTs). Multiple non-related EDT sub-graphs can 
coexist at the same time with the same runtime. While not 
isolating applications, it does automatically globally balance all 
the applications at once. The locality aware scheduling will also 
naturally migrate related data and code closer together thereby 
physically partitioning the different applications. If a more 
secure model is required, different runtimes can run on a subset 
of the machine thereby statically partitioning the machine for the 
various applications; it is more secure but less flexible.

(DEGAS) Our model is support for hierarchical applications, at 
which the top level hierarchy may be logically separate 
programs (or physics models, or…). We also have a strong 
emphasis on interoperability, including with current MPI, MPI+X 
applications. Part of our interoperability between tasking layers 
is supported by the work on Lithe. We are interested in the 
iPython model for combining applications into workflows, but 
this is not part of the DEGAS project itself.

If this is another way of asking question 6), then this is not an 
issue being addressed by our runtime work.

N/A

How does the runtime software itself scale to 100K 
sockets? Specifically, how does it distribute, monitor and 
balance itself and how is it resilient to failures?

Individual instances of runtime system functions and 
responsibilities are created on a per node basis and per user 
program basis to spread the work uniformly as a system scales 
in workload (number of user jobs) and scales to larger number 
of hardware localities (ensembles of sockets). Introspection at 
the hardware support layer and software application layer 
detects and manages load balance through the RIOS control 
interface, the APEX runtime instrumentation and control layer, 
and the RCR black-boarding at the OS layer. Resiliency will be 
supported through the ParalleX execution model micro-
checkpointing cross-cutting Compute-Validate-Commit cycle 
that employs hierarchical fault zones. This dynamic 
methodology engages all component layers of the hardware-
software system for fault detection, isolation, diagnosis, 
reconfiguration, recovery, and restart.

OCR functionality is hierarchically distributed along the 
hardware’s natural computation hierarchy (if it has one) or 
imposing an arbitrary one. OCR divides cores into "runtime" and 
"user". For efficiency, "user" cores run a small layer of the 
runtime and manage that specific core. The other "runtime" 
cores manage the user cores in a hierarchical fashion where 
the "runtime" cores "closest" to the "user" cores will perform low-
latency simple scheduling decisions whereas higher level cores 
will perform longer-term optimization operations.

(DEGAS) DEGAS is already highly scalable on the largest 
machines available today and while some scaling issues in 
hierarchical synchronization (phasers), collective 
communication, and job startup require constant attention within 
the runtime, we do not see any major barriers to arbitrary scale. 
Note that the runtime is parallel by default (a job starts with a 
task per core/numa-domain/hardware thread) which greatly aids 
in scalability. Balancing due to resilience or load problems is 
done with the dynamic tasking and work stealing across nodes, 
both envisioned as voluntary within UPC++ and “by default” 
within a node in Habanero. We see this question of the default 
policy as key for the remainder of the project, but the same 
runtime mechanisms are needed in any case. Resilience is also 
in some sense tunable by the application using the general 
model of containment domains. GASNet-EX is designed to 
allow processes to fail and later be replaced. Distributing work 
is largely left to the applications programmer, but self-
monitoring features and error reporting are being added to the 
interface to allow client runtimes to handle changes. We are 
investigating the semantic changes required to the GASNet-EX 

The APGAS runtime has already been demonstrated to run non-
resiliently and achieve scalable performance on a 55k core 
system. Most runtime operations are localized to a single 
APGAS place and thus naturally scale as the number of nodes 
increase. We have prototyped a resilient version of the APGAS 
runtime at a small scale (<500 cores) and are actively working 
on scaling the resilient version of the runtime to larger scale 
systems.

This is not applicable to X-TUNE as we rely on a run-time 
system provided by others.


