
Test Problem with mPPM on 7043 Grid

Density in X-Y Slice through Center in Z

Tools for Exascale Software Development

from the Application Perspective:

The Importance of DSL Technology

Paul Woodward

Laboratory for Computational Science & Engineering

University of Minnesota

Whatever the Future Holds, DSLs are the Answer:
I will try to make this case by means of historical examples.
1. A DSL allows time travel, you can write code for whatever

the future brings right now, and it will also run right now.
a. The vendors tell you what they plan to do to you.
b. You figure out the best way to exploit new advantages.
c. You figure out the best way to avoid new pitfalls.
d. You determine appropriate new meanings for old code

expressions (example: the vectorizable loop).
e. If this is not possible, you determine new code

expressions that can easily be translated to the old ones
and also to the needed new ones. (ex: Fortran-W).

f. You:
1) Hire 2 CS Ph.D. students from sensitive countries.
2) Call up the ROSE team and plead for help.
3) Write your own pre-compiler in Fortran or ______.
4) All of the above (I am one who did all of these).

g. You enjoy great performance on all platforms.

The high-

lighted

items are

goals that

strongly

match my

own view

of the

benefits

that DSLs

can and

should

provide for

application

developers

This is the X-Stack page on D-TEC.

I will try to highlight the importance of this from my experience

 Scalability

 Programmability

 Performance Portability

 Interoperability with Standard Stack

 Migration for Existing Code

Why DSLs are the Answer: Some History
Just after receiving my Ph.D., in 1973, I worked on the world’s
first vectorized hydrocode, BBC, at Livermore.
1. A DSL was implemented in elaborate macros.

a. Performance Portability on CDC 7600 & CDC Star 100.
b. Stacklib runtime turned 7600 into vector machine (4x)
c. Memory management to keep 36000-long vectors

under control: could have only ws1,ws2,ws3,ws4,ws5.
d. Fastest machine on earth at the time.
e. Civic compiler for Startran discarded in 1978, when Cray

compiler emerged and offered to port legacy code with
its own embedded DSL (example: cDIR$ IVDEP)

f. Legacy code conversion took 10 years, and some codes
simply never converted. You have to want to.

g. “cost is no object” approach, with whole compiler team
of about 3 people, as well as complete control of the OS

h. Today, the vendor would provide a huge list of intrinsic
functions, and a compiler could be source-to-source.

An early computation of an interstellar gas cloud being imploded by

a shock wave, compressing it so that its self gravity can take over and

cause it to collapse and form a star. (Woodward 1976)

(Hubble Revisited, p. 126),

Why DSLs are the Answer: Some More History
Skipping over the CM5 Connection Machine, we come to the
Los Alamos Roadrunner machine, in 2008:
1. Jagan Jayaraj & Pei-Hung Lin implemented a DSL.

a. Performance Portability on everything & Roadrunner.
b. Converted Fortran-77 into C with calls to vendor

provided intrinsic functions for the SPU SIMD engine.
c. PowerPC intrinsics had only different prefix.
d. Intel intrinsics nearly the same, with other names.
e. Fastest machine on earth at the time.
f. Backend to CELL intrinsics discarded with Roadrunner.
g. Legacy code conversion NOT SIMPLE.
h. Need to rewrite performance critical code modules, but

DSL (CFDbuilder) developed to make that easy.
i. Need to restructure data in main memory. Damn.
j. Also, still need to want to. (This is even harder!)
k. We still have 2 more years before we reach the 10-year

time scale historically required for legacy conversion.

Began on a grid of 819221024 cells, now using 409622048 cells.

PPM simulation of Rayleigh-Taylor mixing on grid of 409622048
cells. We view the entire mixing layer at dump 140.

Works Quite Generally: Gas dynamics with PPM at extreme
scale on Blue Waters (not with mPPM mini-app, but close)
Focusing on mixing of fluids at multifluid interfaces, both
“stable” & unstable, and its consequences in various contexts.
1. Simulated the hydrodynamic compression of an initially

spherical, but very simplified, inertial confinement fusion
(ICF) capsule (during friendly user access period).
a. Perturbed with 2 spherical harmonic modes that have a

mode 3 beat frequency, plus 1 extremely high mode.
b. Demonstrated ability to preserve those symmetries

that must be preserved, in a statistical sense.
c. 1.18 trillion cells, about 2 days on 702,000 cores.
d. 1.5 Pflop/s (32-bit) sustained.

2. Mixing of hydrogen into convection zone above helium
shell flash in an evolved giant star (AGB star).
a. Very long approach to violent, unstable global mode of

ingested hydrogen burning (GOSH).
b. Implications for nucleosynthesis of heavy elements.

The uniform Cartesian Thin Equatorial

grid moves steadily Slice 3/44

inward. We Thick

render the

same portion

of the grid

in each

view here

so that

the field

of view

includes

roughly

the entire

part of the

problem

domain in

which no

boundary

conditions are

applied.

Dump 0

t = 0

105603

grid

22nd 44th

in Y

rholut 7

opacity
48

distance
from

midplane
1.45

The uniform Cartesian

grid moves steadily

inward. We

render the

same portion

of the grid

in each

view here

so that

the field

of view

includes

roughly

the entire

part of the

problem

domain in

which no

boundary

conditions are

applied.

Dump 23

t = 0.039167

105603

grid

22nd 44th

in Y

rholut 7

opacity
48

distance
from

midplane
1.45

The uniform Cartesian

grid moves steadily

inward. We

render the

same portion

of the grid

in each

view here

so that

the field

of view

includes

roughly

the entire

part of the

problem

domain in

which no

boundary

conditions are

applied.

Dump 34

t = 0.048333

105603

grid

22nd 44th

in Y

rholut 12

opacity
48

distance
from

midplane
1.45

Time evolution of the radial location of the He-shell flash convection zone based on the 1-D stellar evolution model of

Herwig. Time is set to 0 at the peak of the He-burning luminosity. Dots represent individual time steps. Lagrangian

lines at different mass fractions are shown. The convection zone grows both in radius and in mass fraction over the 2-

year interval shown. Our simulation is performed at about time 0.2 yr on this slide.

Here we see the central

0.2% of the simulation domain, convection cells as

large as about a fifth of the entire convection zone are seen by this time.

PPM simulation

of VLTP star

helium shell

flash

convection

on a 15363

grid.

Note the trains of small vortices containing
entrained, stable gas being drawn down into

the convection zone.

Slice of 3-D

Domain

t = 400 min.

|∇×u|

Here we see the upper boundary of the

convection zone above the helium burning shell, looking from the center of

the star outward. The blue descending plumes trace out the convection cells

PPM simulation

of VLTP star

helium shell

flash

convection

on a 15363

grid.

Note the trains of small vortices containing
entrained, stable gas being drawn down into

the convection zone.

Half of 3-D

Domain

t = 400 min.

FVH+He

Energy release

from burning
ingested

hydrogen

is shown

as the dark

purple and

yellow/red

flame.

Sakurai’s Object
H-ingestion
simulation on Blue
Waters machine in
Jan., 2014, on a
grid of 15363 cells.

We see a
hemisphere and
make only mixtures
of entrained
hydrogen-rich gas
with gas of the
helium shell flash
convection zone
visible. The energy
release rate from
burning ingested H
is shown in very
dark blue, yellow,
and white.

t = 650 min.

Burning is now

occurring at

a larger

number

of loca-

tions

at the

same

time.

Sakurai’s Object
H-ingestion
simulation on Blue
Waters machine in
Jan., 2014, on a
grid of 15363 cells.

We see a
hemisphere and
make only mixtures
of entrained
hydrogen-rich gas
with gas of the
helium shell flash
convection zone
visible. The energy
release rate from
burning ingested H
is shown in very
dark blue, yellow,
and white.

t = 1188 min.

The burning front

has now reached

the antipode,

where

violent,

localized

energy

release

drives

the

oscill-

ation

back

to its

origin-

al site.

GOSH =

Global

Oscillation

of Shell

Hydrogen

ingestion.

Sakurai’s Object
H-ingestion
simulation on Blue
Waters machine in
Jan., 2014, on a
grid of 15363 cells.

We see a
hemisphere and
make only mixtures
of entrained
hydrogen-rich gas
with gas of the
helium shell flash
convection zone
visible. The energy
release rate from
burning ingested H
is shown in very
dark blue, yellow,
and white.

t = 1200 min.

The GOSH is

indeed global.

This flow has

a 1-D

average,

but it is

by no

means

a 1-D

phen-

omen-

on.

Blue

Waters

makes

it possi-

ble to

see the

GOSH in

its full 3-D

complexity.

Sakurai’s Object
H-ingestion
simulation on Blue
Waters machine in
Jan., 2014, on a
grid of 15363 cells.

We see a
hemisphere and
make only mixtures
of entrained
hydrogen-rich gas
with gas of the
helium shell flash
convection zone
visible. The energy
release rate from
burning ingested H
is shown in very
dark blue, yellow,
and white.

t = 1212 min.

Once the GOSH

quiets down,

after about

a day in

the life

of this

star,

we

can

be

well

justi-

fied

in

carry-

ing our

descrip-

tion of

the star

forward

with a 1-D

stellar evolution

code, suitably

modified.

Sakurai’s Object
H-ingestion
simulation on Blue
Waters machine in
Jan., 2014, on a
grid of 15363 cells.

We see a
hemisphere and
make only mixtures
of entrained
hydrogen-rich gas
with gas of the
helium shell flash
convection zone
visible. The energy
release rate from
burning ingested H
is shown in very
dark blue, yellow,
and white.

t = 1225 min.

Sakurai’s Object
H-ingestion
simulation on Blue
Waters machine in
Jan., 2014, on a
grid of 15363 cells.

We see a
hemisphere and
make only mixtures
of entrained
hydrogen-rich gas
with gas of the
helium shell flash
convection zone
visible. The energy
release rate from
burning ingested H
is shown in very
dark blue, yellow,
and white.

t = 1238 min.

Why we need a DSL and not just subroutines or macros:
1. Briquette data structure.

a. D(4,4,4,16,nbqs), not D(4*nbqx,4*nbqy,4*nbqz,16)
b. Indxbq(4,0:nbqx+1,0:nbqy+1,0:nbqz+1,8)
c. AMR version makes everything much harder.
d. D is bunch of briquette records, 43cells, 16 variables.
e. Indxbq is a look-up table – indirect addressing of bqs.

2. Annotated Fortran-W code expression – easy to write.
a. Simple program for a uniform grid for a single briquette

3. CFDbuilder automatic code translator (moving to ROSE).
a. Takes code for sequence of single briquette updates.
b. In-lines everything, fuses ALL loops, compresses memory

footprint to fit into cache. Doing this manually is insane.
4. Benefits in (adjustably) adapting code to future hardware:

a. Increases flops/word, adjustably, to extreme levels.
b. Decreases relevance, adjustably, of off-chip data bandwidth.
c. Produces massive sequence of short vector (SIMD) ops that

ALL have perfectly aligned 16-word operands.

Why we need a DSL and not just subroutines or macros:
1. Further benefits of the DSL approach

a. The compiler does not have to take responsibility for the
code transformations.

b. It does not have to prove that they are “safe.”
c. It does not need to become convinced that the transformed

code is “correct.”
d. By using the DSL, you assert that the transformations are

safe and that the transformed code is correct.
e. The use of a DSL forces the programmer to take

responsibility for his or her code.
f. This is no different than the default situation, the bugs are

always your responsibility.
g. These facts make the DSL translator “easy” to write.
h. Similar example from the deep past: cDIR$ IVDEP

A Strategy for a Legacy Code, as an Example of Potential of DSL:
1. Briquette data structure.

a. DSL can understand new intrinsic data type, a bq-array.
b. Ease programming in computationally intensive routines.
c. Automatically apply new rule for computing memory

location from array indices in other parts of code, I/O etc.
d. Could dramatically reduce barriers to adoption.

2. Assume a code that uses as fundamental data structures lists of
grid cells, lists of their neighbors, and lists of their grid cell faces,
with lists of cells on either side of the faces.
a. Such codes do exist. You might know one.

3. Imagine that you could wave a wand and magically turn each
grid cell into a grid briquette of 43 cells.
a. Stalls on indirect addressing would simply disappear.
b. Essentially every line of code would now vectorize.

4. Why would you not do that?
a. You might justifiably be afraid.
b. An automatic DSL tool that is flawless is the answer to fear.

Let’s start small and work outward. This is a grid cell.

We will subdivide it evenly into a grid briquette.

We force a minimal degree of uniformity at the
microscale to accommodate needs of SIMD engine.

The highlighted “grid plane” will consist of either:
4 quadwords (Cell, Power7, Opteron, Nehalem),
2 octowords (Intel Sandy Bridge), or
1 hexadecaword (Intel MIC, Nvidia Fermi).

Process 2 grid planes at once for 32-wide SIMD of Nvidia Kepler.

The computation proceeds along a sequence of briquettes at same grid level.

In the on-chip cache
workspace, we have
many short segments
of grid planes, each
holding one variable
and none > 5 planes.

These briquettes are in
transit between main
memory and the cache.

In the cache, we unpack
arriving briquettes into
our temporary segments,
and we pack results into
updated briquettes.

Briquettes & Pipelining-for-reuse

Woodward, P. R., J. Jayaraj, P.-H. Lin, P.-C. Yew, M. Knox, J. Greensky, A. Nowatzki, and K. Stoffels, “Boosting

the performance of computational fluid dynamics codes for interactive super-computing,” Proc. Intntl. Conf. on

Comput. Sci., ICCS 2010, Amsterdam, Netherlands, May, 2010

Overcoming main memory bandwidth
limitation

• We need about 220 temporary arrays per thread
to update the problem state

• Through our optimizations, we reduced the
workspace containing all the 220 temporaries to
just 45.09 KB per thread (good for CPU or Xeon
Phi, but not good enough for a GPU).

• Text segment for computation region is 91 KB.

• Text segment and workspaces of 2 to 4 threads
can easily fit in the 256 KB or 512 KB L2 cache

Performance gains

Speed-up from

briquettes pipelining-for-reuse &
memory reduction

both

Nehalem 2x 3.33x 6.69x

Sandy Bridge 3.78x 1.66x 6.28x

Nehalem : Xeon 5570 ; Intel 9 Fortran Compiler; 16 OpenMP threads running on two sockets
Dual-socket, 4-core @ 2.93GHz, SSE-4.2 (128-bit)

Sandy Bridge : Xeon ES-2670; Intel 13 Fortran Compiler; 32 OpenMP threads running on two sockets
Dual-socket, 8-core @ 2.6GHz, AVX (256-bit)

Expect performance to double by number of cores and double by increased vector widths (for vectorized
sections), and decrease by 11 % for clock-frequency of Nehalem is higher (3.54x in total)

Workspace /
thread (KB)

flop/cell

Fortran-W Pipelined % redundancy

RK-adv 16.59 379.89 162.92 133.16

PPM-adv 19.2 454.61 273.31 66.34

tp3 208.28 5195.77 3218.67 61.43

Performance gains for PPM-adv

Redundancy in computation eliminated

A Strategy for a Legacy Code: Potential for Incremental Adoption
1. Assume a code that uses as fundamental data structures lists of

grid cells, lists of their neighbors, and lists of their grid cell faces,
with lists of cells on either side of the faces.

2. With assistance from a DSL, rewrite the small portion of the
code that produces the lists of cells and faces.
a. This can be done independently of the routines that use

these lists to do physics.
b. Turn each cell into a briquette, and produce a 64-item list

fragment for each briquette.
c. Produce an equivalent, and shorter, list of briquettes.

3. What happens to the routines that use the lists?
a. EXACTLY NOTHING.
b. There is no benefit, but also no cost.

4. What happens to the routines that you rewrite, with assistance
of the DSL, to use the new lists of briquettes?
a. The indirect addressing performance hit vanishes.
b. Everything vectorizes effortlessly.

Key Role of Automated Code Transformation – the DSL
1. Embedded DSL allows original code to be annotated, but

otherwise not changed.
a. Only minor revisions, and code still compiles and runs in

original way, with all its pluses and minuses.
b. Transformation of code is reversible – just discard the

translated code, and even the translator, & you are back!
2. When you find a bug, don’t panic. Just debug the translator.

a. Automatically fix ALL bugs of this sort effortlessly, without
having to find them all.

b. Just like compiler bugs, you can code around them if you
know which they are and the bugs are slow to be fixed.

3. Do not exploit your DSL developers.
a. Do not ask them to do things that you can do easily.
b. Do ask them to do things that they can do easily.
c. Negotiate what is translated and what is not.

4. If the DSL is built easily, a goal of ROSE team, then you do not
need to feel any guilt for all the benefits the DSL gives to you.

Variable_3

denotes a 32-word

array consisting of the

3rd and 4th grid planes

of the 6-plane working

buffer for all variables

in the transformed

section.

duyl_2, duyl_3, duyl_4

Need not all be

defined, because

duyl_3 “obviously”

Is just the second half

of duyl_2 followed by

the first half of duyl_4.

thngy1_

denotes a 32-word

array of 2 grid planes

that matches any

position in the

sequence _1, _2, …

A DSL can give

us our own

Fortran implicit

type!

No declarations

necessary!

The computation proceeds along a sequence of briquettes at same grid level.

In the on-chip cache
workspace, we have
many short segments
of grid planes, each
holding one variable
and none > 5 planes.

These briquettes are in
transit between main
memory and the cache.

Whatever_5
Whatever_4
Whatever_3
Whatever_2
Whatever_1

Future Challenges:
 As Moore’s Law stalls, vendors might think about improving

their designs to deliver more than 5% to 10% of peak.
 WE would need to stop publishing LinPack performance.
 WE would need to stop writing codes that force data to make

frequent, needless round trips between chip & main memory.
 WE would need to learn to love the cache.
 THEY would need to stop giving us pointless cache coherency.
 THEY would need to start giving us fast and cost-free register

spilling to on-chip cache.
 THEY would need to give us fast semaphores requiring no

electrons to leave the chip, so all those cores can COOPERATE.
 WE ALL would really like very fast chip interconnects.

Bandwidth is key, and latency is not (we can plan).
 WE ALL SHOULD simply throw away all that expensive and

power hungry DRAM. If it scales, it doesn’t need DRAM.
 I, personally, want to write programs that treat the entire

machine memory as shared. I promise not to abuse this.

Co-Design Issues for Extreme Performance per Node:
1. Challenges for Many-Core Devices:

a. Many cores require even many more threads.
1) 2 threads per core is a minimum today.
2) 4 threads per core keeps being threatened.

b. NUMA concerns on the chip itself.
1) Tasks performed by parallel threads are best today

if they are independent.
2) This model becomes increasingly wasteful of

memory bandwidth as core counts increase.
3) Cores can cooperate through a shared L3 cache.
4) Cooperation through what amounts to message

passing on the chip between L2 caches is looking
increasingly promising.

5) This adds a whole new layer to the memory and
processing hierarchy.

6) Knights Corner failed at this, but Knights Landing
might succeed. GPUs cannot now do this at all.

Co-Design Issues for Extreme Performance per Node:
1. Challenges for GPU Devices:

a. Need for truly tiny on-chip memory footprint.
1) Forced by requiring minimum of 8 threads/core.
2) Have essentially only L1 “caches” (actually local

stores) on chip, 8 per core with 32 KB each.
3) Can run up to 8 threads per L1, for 64 threads/core.
4) On-chip storage is small, but computation there is

very fast. Really is not a cache, but a local store.
5) No false sharing, because no sharing, except for

main memory & read-only items in “texture cache.”
6) 8 threads/core produces only ¼ memory bandwidth

b. Consequences of forcing at least 8 threads per core:
1) Data must be read and written in a very special

order that minimizes its on-chip residence time.
2) Tasks making up computation must be performed in

special order that produces intermediate data that
can be almost immediately consumed.

Co-Design Issues for Extreme Performance per Node:
1. Challenges arising from CPU and GPU differences:

a. GPUs require redundant computation to minimize on-
chip memory footprint and avoid off-chip data access,
but CPUs do not require this.
1) Forces good GPU program to be fundamentally

different from good CPU program.
2) Have found a way to accommodate this by variable

degrees of pipelining, but this is not simple.
b. GPU’s 8 threads per core minimum cannot share on-

chip data, but CPU’s threads can do this.
1) Forces good programs for the two devices to be

fundamentally different, unless restrict self to
programs that can run on both, and which are
suboptimal on both.

c. Preferred languages for two devices are different.
1) Forces good programs to be syntactically different.
2) Code translator can address this.

I am Very Hopeful Despite these Issues & Challenges:
1. Accelerators seem to be devices that the scientific

community can substantially influence.
a. It could be easier to convince a vendor to make a

change if that vendor is used to serving a narrow
range of uses and making changes for them.

Some History:
1. The strategy of the code design used in multifluid PPM has been set out in:

Woodward, P. R., Jagan Jayaraj, and Pei-Hung Lin, “Transforming Scientific
Codes to Execute Efficiently on the IBM Cell Processor as well as on Other
Multicore Microprocessor CPUs.” LCSE Report, Nov. 9, 2006, available at
www.lcse.umn.edu/F77-for-CELL.
Woodward, P. R., J. Jayaraj, P.-H. Lin, and P.-C. Yew, 2008, “Moving Scientific
Codes to Multicore Microprocessor CPUs,” Computing in Science &
Engineering, special issue on novel architectures, Nov., 2008, p. 16-25.
Preprint available at www.lcse.umn.edu/CiSE.
Woodward, P. R., J. Jayaraj, P.-H. Lin, and W. Dai 2009, “First Experience of
Compressible Gas Dynamics Simulation on the Los Alamos Roadrunner
Machine,” Concurrency and Computation Practice and Experience, 21, 2160-
2175 (2009), preprint available at www.lcse.umn.edu/RR-experience.
Woodward, P. R., J. Jayaraj, P.-H. Lin, P.-C. Yew, M. Knox, J. Greensky, A.
Nowatzki, and K. Stoffels, “Boosting the performance of computational fluid
dynamics codes for interactive supercomputing,” Proc. Intntl. Conf. on
Comput. Sci., ICCS 2010, Amsterdam, Netherlands, May, 2010. Preprint
available at www.lcse.umn.edu/ICCS2010.

2. Co-design issues exposed by mPPM mini-app are discussed in:
Woodward, P. R., J. Jayaraj, and R. Barrett, “mPPM, Viewed as a Co-Design
Effort,” Proc. Co-HPC workshop, Supercomputing 2014, New Orleans, LA.

http://www.lcse.umn.edu/F77-for-CELL
http://www.lcse.umn.edu/CiSE
http://www.lcse.umn.edu/RR-experience
http://www.lcse.umn.edu/ICCS2010

Some History:
3. The motivation for and results of building automated tools to execute this

code design strategy has been set out in:
Lin, P.-H., J. Jayaraj, and P. R. Woodward, “A Study of the Performance of
Multifluid PPM Gas Dynamics on CPUs and GPUs,” Proc. SAAHPC
Conference, Knoxville, Tennessee, July, 2011. Preprint available at
www.lcse.umn.edu/SAAHPC and presentation available at http://www-
users.cs.umn.edu/~phlin/pub/SAAHPC2011.pdf ;
P.-H. Lin, J. Jayaraj, P. R. Woodward, and P.-C. Yew, 2011, "A Code
Transformation Framework for Scientific Applications on Structured Grids,"
Technical Report 11-021, UMN Computer Science and Engineering Technical
Report, Sept., 2011, available at
https://wwws.cs.umn.edu/tech_reports_upload/tr2011/old_files/11-
021.pdf ;
Jayaraj, J., P.-H. Lin, P. R. Woodward. And P.-C. Yew, “CFD Builder: A Library
Builder for Computational Fluid Dynamics,” to appear in Proceedings
of 28th IEEE International Parallel & Distributed Processing Symposium
(IPDPS): Programming Models, Languages and Compilers Workshop for
Manycore and Heterogeneous Architectures (PLC2014), Phoenix, AZ, 2014,
preprint available at www.lcse.umn.edu/IPDPS2014.
Also the theses of Jagan Jayaraj and Pei-Hung Lin in 2013.

http://www.lcse.umn.edu/SAAHPC
http://www-users.cs.umn.edu/~phlin/pub/SAAHPC2011.pdf
https://wwws.cs.umn.edu/tech_reports_upload/tr2011/old_files/11-021.pdf
http://www.lcse.umn.edu/IPDPS2014

Some History:
4. The simulations quoted in these slides have been published in:

Woodward, P. R., J. Jayaraj, P.-H. Lin, M. Knox, D. H. Porter, C. L. Fryer, G.
Dimonte, C. C. Joggerst, G. M. Rockefeller, W. W. Dai, R. J. Kares, and V. A.
Thomas, “Simulating Turbulent Mixing from Richtmyer-Meshkov and
Rayleigh-Taylor Instabilities in Converging Geometries using Moving
Cartesian Grids,” Proc. NECDC2012, Oct., 2012, Livermore, Ca., LA-UR-13-
20949; also available at www.lcse.umn.edu/NECDC2012;
Woodward, P. R., Herwig, F., and Lin, P.-H., “Hydrodynamic Simulations of H
Entrainment at the Top of He-Shell Flash Convection,” Astrophysical Journal
798, 49 (2015). arXiv:1307.3821, (2013).
Herwig, F., P. R. Woodward, P.-H. Lin, Mike Knox, and C. L. Fryer, “Global
Non-Spherical Oscillations in 3-D 4π Simulations of the H-Ingestion Flash,”
Astrophysical Journal Letters 792, L3, preprint available at arXiv:1310.4584,
(2014).

5. Acknowledgement:
The mPPM mini-app was developed under a contract with Sandia’s
Mantevo project; CFDbuilder development was supported through
contracts with LANL and SNL; work with extreme-scale simulation of multi-
fluid mixing in ICF and other contexts using pipelined briquette processing
was supported through contracts with LANL; support for stellar hydro and
interactive supercomputing was provided by NSF, also Blue Waters access.

http://www.lcse.umn.edu/NECDC2012

