
Traleika Glacier (X-Stack) Project 

The Traleika Glacier project will research and mature software technologies addressing 

major Exascale challenges, and get ready to intercept by the end of the decade. The 

principals of this project are: Shekhar Borkar & Wilfred Pinfold (Intel), Rich Lethin 

(Reservoir Labs), Rishi Khan (ETI), Prof Guang Gao (Delaware), Prof Laura Carrington 

(UCSD), Prof Vivek Sarkar (Rice), Prof David Padua & Prof Josep Torrellas (UIUC), 

John Feo (PNNL), and Jackie Chen (DOE Co-design Centers). 

 

The research agenda of this team addresses the major Exascale challenges, namely (1) 

energy efficiency, (2) scalability, (3) data locality, (4) programmability, (5) execution 

model, and (6) resiliency. We plan to address these challenges across the entire stack, 

identifying solutions that are best implemented with an interdisciplinary approach, 

working closely with the entire X-Stack research community. 

 

Our programming model primarily focuses on the disruptive, X part, of MPI+X, although 

MPI cannot be ignored. The programming model adheres to separation of concerns, 

separating domain specification from HW mapping, expression of data locality, globally 

shared, non-coherent address space, and generation of HW specific codelets. The 

execution model is data-flow inspired, with self-contained tiny codelets, with dynamic, 

non-blocking, event-driven scheduling, observation based adaptation, all implemented in 

a runtime environment.  

 

Our approach to the programming system rests on three major components: Concurrent-

Collections (CnC), Hierarchical-Tiled-Arrays (HTA), and R-Stream optimizations. The 

user code is compiled into a parallel intermediate language (PIL, GDG). Codelets are 

generated from this intermediate representation for various runtime systems. 

 

Presently we are experimenting with four different runtime systems: (1) Intel research 

runtime (IRR) targeting the Intel Straw-man architecture, (2) ETI’s SWARM for a wide 

range of parallel machines, (3) Delaware’s DAR
3
TS exploring codelet program execution 

model using portable C++, and (4) Rice’s Habanero-C which interfaces to IRR and CnC. 

Our goal is to converge to a single Open Collaborative Runtime (OCR), adopting salient 

features from these disparate runtime technologies, and make it available to the 

community for research. Our runtime research will focus on locality aware scheduling, 

adaptive performance tuning of the hardware, dynamic data movement, and introspective 

dynamic optimization of the system. 

 

We have instrumented a straw-man architecture adopting the programming and execution 

models, and the HW implementation of this architecture is evaluated to ensure 

implementation capable of meeting the Exascale goals. This architecture is captured in 

two simulators for research, namely AFL and FSIM. AFL works with the Intel research 

runtime API’s and extensions, executes native code on the host processor, runs fast, and 

also generates useful statistical information for tuning. However, it does not model the 

straw-man architecture, and is primarily targeted for rapid application development. 



 
FSIM, the functional simulator, models the straw-man architecture, memory and network 

hierarchies, runs reasonably fast, generates useful statistics, and runs massively parallel 

and distributed. It is not clock accurate; nevertheless, it is good enough for the entire 

system evaluation. These simulators are accompanied by a set of tools for post processing 

statistics into meaningful results such as energy consumption, data movement, and so on. 

The simulators are fairly accurate for evaluation using comparisons rather than absolute, 

and thus will be used to compare architectural features, programming constructs, runtime 

features, algorithms, and so on. 

 
 

The flowchart depicts our evaluation flow. We will work closely with the co-design 

centers to understand proxy applications, extract small idioms and kernels, program them 

using our programming system, run them in the simulation environment using the 

runtime system, and evaluate the entire system towards effectiveness of meeting the 

Exascale goals. This will be an iterative process, with learning incorporated into changes 

in the architecture, programming system and the runtime. Our research in all disciplines 

will be evaluated as a complete system using this infrastructure, and thus will be matured 

for a timely intercept to the Exascale system. 

 

For details, please visit our website: https://sites.google.com/site/traleikaglacierxstack/  
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