
Traleika Glacier (X-Stack) Project

The Traleika Glacier project will research and mature software technologies addressing

major Exascale challenges, and get ready to intercept by the end of the decade. The

principals of this project are: Shekhar Borkar & Wilfred Pinfold (Intel), Rich Lethin

(Reservoir Labs), Rishi Khan (ETI), Prof Guang Gao (Delaware), Prof Laura Carrington

(UCSD), Prof Vivek Sarkar (Rice), Prof David Padua & Prof Josep Torrellas (UIUC),

John Feo (PNNL), and Jackie Chen (DOE Co-design Centers).

The research agenda of this team addresses the major Exascale challenges, namely (1)

energy efficiency, (2) scalability, (3) data locality, (4) programmability, (5) execution

model, and (6) resiliency. We plan to address these challenges across the entire stack,

identifying solutions that are best implemented with an interdisciplinary approach,

working closely with the entire X-Stack research community.

Our programming model primarily focuses on the disruptive, X part, of MPI+X, although

MPI cannot be ignored. The programming model adheres to separation of concerns,

separating domain specification from HW mapping, expression of data locality, globally

shared, non-coherent address space, and generation of HW specific codelets. The

execution model is data-flow inspired, with self-contained tiny codelets, with dynamic,

non-blocking, event-driven scheduling, observation based adaptation, all implemented in

a runtime environment.

Our approach to the programming system rests on three major components: Concurrent-

Collections (CnC), Hierarchical-Tiled-Arrays (HTA), and R-Stream optimizations. The

user code is compiled into a parallel intermediate language (PIL, GDG). Codelets are

generated from this intermediate representation for various runtime systems.

Presently we are experimenting with four different runtime systems: (1) Intel research

runtime (IRR) targeting the Intel Straw-man architecture, (2) ETI’s SWARM for a wide

range of parallel machines, (3) Delaware’s DAR
3
TS exploring codelet program execution

model using portable C++, and (4) Rice’s Habanero-C which interfaces to IRR and CnC.

Our goal is to converge to a single Open Collaborative Runtime (OCR), adopting salient

features from these disparate runtime technologies, and make it available to the

community for research. Our runtime research will focus on locality aware scheduling,

adaptive performance tuning of the hardware, dynamic data movement, and introspective

dynamic optimization of the system.

We have instrumented a straw-man architecture adopting the programming and execution

models, and the HW implementation of this architecture is evaluated to ensure

implementation capable of meeting the Exascale goals. This architecture is captured in

two simulators for research, namely AFL and FSIM. AFL works with the Intel research

runtime API’s and extensions, executes native code on the host processor, runs fast, and

also generates useful statistical information for tuning. However, it does not model the

straw-man architecture, and is primarily targeted for rapid application development.

FSIM, the functional simulator, models the straw-man architecture, memory and network

hierarchies, runs reasonably fast, generates useful statistics, and runs massively parallel

and distributed. It is not clock accurate; nevertheless, it is good enough for the entire

system evaluation. These simulators are accompanied by a set of tools for post processing

statistics into meaningful results such as energy consumption, data movement, and so on.

The simulators are fairly accurate for evaluation using comparisons rather than absolute,

and thus will be used to compare architectural features, programming constructs, runtime

features, algorithms, and so on.

The flowchart depicts our evaluation flow. We will work closely with the co-design

centers to understand proxy applications, extract small idioms and kernels, program them

using our programming system, run them in the simulation environment using the

runtime system, and evaluate the entire system towards effectiveness of meeting the

Exascale goals. This will be an iterative process, with learning incorporated into changes

in the architecture, programming system and the runtime. Our research in all disciplines

will be evaluated as a complete system using this infrastructure, and thus will be matured

for a timely intercept to the Exascale system.

For details, please visit our website: https://sites.google.com/site/traleikaglacierxstack/

Processor Node with DRAM

Hardware System

Point-to-Point
Network

L1
Scratchpad

Incoherent
HW cache

Standard
x86 RF

Reductions

& Multicast

Barrier
Network

32b

16b

8b Perf. Mon.

DMA
Unit

MMIO Glue Logic

IO-APIC

Control Engine (CE)

Optimized for execution
model and resiliency

2.25 MB Shared L2 Memory

XE XE XE XE

XE XE XE XE

64KB L1 SPAD
+

32K icCache

64KB L1 SPAD
+

32K icCache

64KB L1 SPAD
+

32K icCache

64KB L1 SPAD
+

32K icCache

64KB L1 SPAD
+

32K icCache

64KB L1 SPAD
+

32K icCache

64KB L1 SPAD
+

32K icCache

64KB L1 SPAD
+

32K icCache

CE

64KB L1 SPAD
+

32K icCache

Network Bridge

In
te

r-
B

lo
ck

Barrier
Unit

Point-to-Point
Internal Network

Block

Large local stores (locality)
Sensors for self-awareness
Fine grain energy management

Point-to-Point
Network

L1
Scratchpad

Incoherent
HW cache

Very
Large

Register

File

Reductions

& Multicast

Barrier
Network

64b
ALUs

32b
ALUs

Clock + Vdd
Gate Unit

16b
ALUs

8b
ALUs

Perf. Mon.

DMA
Unit

Execution Engine (XE)
Optimized for apps
Large local stores
for data locality

Block Block

Block Block

8M L3 Mem

Block Block

Block Block

S
e

co
n

d
 S

ta
g

e
 N

e
tw

o
rk

Second Stage Reduction, Mcast

B
a

rr
ie

r
N

e
tw

o
rk

Block Block

Block Block

8M L3 Mem

Block Block

Block Block

S
e

co
n

d
 S

ta
g

e
 N

e
tw

o
rk

Second Stage Reduction, Mcast

B
a

rr
ie

r
N

e
tw

o
rk

Block Block

Block Block

8M L3 Mem

Block Block

Block Block

Se
co

n
d

St
ag

e
 N

et
w

o
rk

Second Stage Reduction, Mcast

B
a

rr
ie

r
N

e
tw

o
rk

Block Block

Block Block

8M L3 Mem

Block Block

Block Block

Se
co

nd
 S

ta
ge

 N
et

w
o

rk

Second Stage Reduction, Mcast

B
ar

ri
e

r
N

e
tw

o
rk

Uncore

MC
@

128
GB/s
Peak

T
h

e
rm

a
l

M
o

n
ito

rs
P

o
w

er
M

o
n

ito
rs

C
ircu

it
M

o
n

ito
rs

Top-
Level

Network

16 MB LLC
Memory

Top-Level
Reductions,
Barries, &
Multicast
SupportB

a
rr

ie
r

U
n

it

Processor Chip

Hierarchical, heterogeneous interconnect

Energy Efficiency
Data locality

ResiliencyAlgorithms and
Applications

High level notations
Compiler

Transformations
Separation of domain
specification & tuningPGM System

CnC, HTA, R-Stream

Generate codelets
Tools

Low level Compilers,
LLVM

Dynamic scheduling of
codelets

Self-aware, Fine grain
resource management

Resiliency manager

System SW
Exec Model, Open

Runtime

Separation of CE & XE
Large local stores

Sensors: self-awareness
Fine grain E management

Straw-man System
Architecture

HW/SW co-design
Reactive & proactive

Resiliency
Asymptotic N-modular

Redundancy

Native & target code
execution, PMU

Statistics

Simulators, Tools
AFL, FSim

User
Defined

Objective

https://sites.google.com/site/traleikaglacierxstack/

