

# Office of Science



Parallelism

**Data Movement** 

Programmability

Resiliency

# X-Stack Pl and Coordination Meeting

Sonia R. Sachs March 20, 2013



# Office of Science









Parallelism

**Data Movement** 

Programmability

Resiliency

# **Organizing Committee**

- Saman Amarasinghe
- Shekhar Borkar
- Richard Lethin
- Vivek Sarkar
- Kathy Yelick

- Andrew Chien
- Dan Quinlan





**Parallelism** 

**Data Movement** 

Programmability

Resiliency

# Acknowledgements

- LBNL for hosting our meeting
  - Special thanks to Kathy Yelick
- LBNL support staff for meeting logistics
  - Special thanks to Tara White
- Organizing Committee
- X-Stack PIs for all meeting materials





Parallelism Data Movement

Programmability

Resiliency

## Meeting Goals

- Review X-Stack Portfolio
- Review X-Stack Coordination
  - FOA 255-257 X-Stack (partial)
  - Execution Models
  - Evolving MPI to Exascale
  - Computing Architecture Laboratory (CAL) and
  - Beyond Simulation and Modeling (BSM)
- Understanding the extended X-Stack puzzle
- Revise Vision of X-Stack



### X-Stack Portfolio



#### **DEGAS** (Kathy Yelick)

Hierarchical and resilient programming models, compilers and runtime support.



#### **Traleika** (Shekhar Borkar)

Exascale programming system, execution model and runtime, applications, and architecture explorations, with open and shared simulation infrastructure.



#### **D-TEC** (Dan Quinlan)

Complete software stack solution, from DSLs to compilers to optimized runtime systems.



#### XPRESS (Ron Brightwell)

Software architecture and interfaces that exploit the ParalleX execution model, prototyping several of its key components.



#### DynAX (Rishi Khan)

Novel programming models, dynamic adaptive execution models and runtime systems.



#### X-Tune (Mary Hall)

Unified autotuning framework that integrates programmer-directed and compiler-directed autotuning.



#### **GVR** (Andrew Chien)

Global view data model for architecture support for resilience.



#### **CORVETTE** (Koushik Sen)

Automated bug finding methods to eliminate non- determinism in program execution and to make concurrency bugs and floating point behavior reproducible-



#### **SLEEC** (Milind Kulkarni)

Semantics-aware, extensible optimizing compiler that treats compilation as an optimization problem.

SC12 November 15, 2012



## **Coordinating Projects**

**D-TEC: LLNL and MIT** 

Traleika Glacier:Intel

**DEGAS: LBNL** 

XPRESS: Sandia

DAX (ETI):

Autotunig: U. Utah

**GVR**: U. Chicago

**SLEEC:** Purdue

**CORVETTE: UCB** 

**Co-Design Centers** 



**C**oDEX

**DMD** 

**Blackcomb** 

**Thrifty** 

**FOX** 

ExM

Virtualize

**Auto-tuning** 

**Synthesis** 

**ZettaBricks** 

**VAncouver** 

6

**Execution Models** 

CAL

Exascale MPI

**Fast Forward** 

**BSM** 

## X-Stack: Vision in Progress





### X-Stack Software Vision

# Aligned with the Exascale Research Initiative

- ECI Goals: Deploy exascale computers:
  - 500 to 1,000 more performance than today's HPC systems
  - Under **20MW** Power
  - Highly programmable
- ECI Strategy:
  - Conduct critical R&D efforts.
  - Develop exascale software stacks.
  - Fund computer technology vendors
  - Fund the design and development of exascale computer systems.
  - Joint effort with NNSA.
  - Collaboration with other government agencies and other countries.

