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Motivation

■ Modern computational science applications composed of many 
different libraries

■ Computational libraries, communication libraries, data 
structure libraries, etc.

■ Peridigm, developed by Mike Parks, builds on 10 different 
Trilinos libraries

■ Each library has its own idioms and expected usage

■ Determining right way to compose and use libraries to solve a 
problem is difficult
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Motivation: Compositional complexity

■ Consider loosely-coupled multi-scale computational mechanics 
problem (developed by co-PI Arun Prakash)

■ Must determine right way to decompose problem, couple 
separate solutions, etc.
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Motivation: Compositional complexity

■ Simple case: fixed number of  
subdomains, only consider 
how to couple them together

■ Vast space of configurations: 
8 subdomains → 135K 
possible schedules

■ Large variation in 
performance of different 
orders

■ Exploration of different 
variants requires knowledge 
of domain semantics, cost 
estimates

4
Wednesday, March 20, 13



X-Stack PI meeting	
 March 20, 2013

Motivation: Difficult interaction between libraries

■ Peridigm: computational peridynamics code

■ Allows modeling of materials under 
stress without explicit accounting for 
discontinuities (fractures, etc.)

■ Built on Trilinos components

■ Set of computation and communication 
libraries

■ Requires careful coordination of data 
movement operations to manage shadow 
data, etc. needed by solvers

■ But data movement requirements can 
be directly inferred from which 
equations are being solved
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SLEEC: Principles

■ Abstractions carried by domain libraries

■ Often a lot of semantics “in the head” of domain scientists, or 
even captured by library, but not communicated to compiler

■ Need effective annotation language for capturing semantics

■ Compiler should be domain agnostic

■ Same infrastructure used for optimization and transformation 
regardless of domain

■ Need common IR for capturing abstractions

■ Compiler should be able to optimize for various objectives

■ Do not want to focus solely on performance

■ Need generic optimization ability and cost models
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SLEEC: Overview

7
Wednesday, March 20, 13



X-Stack PI meeting	
 March 20, 2013

SLEEC: Components

■ Annotation language for capturing semantic properties of 
domain libraries

■ High-level intermediate representation to represent programs 
that use annotated domain libraries

■ Transformation strategies that leverage annotations to perform 
semantics-driven code transformations

■ Optimization heuristics that use domain-specific cost models to 
find more efficient program variants

■ Iterative refinement techniques that let the compiler work with 
incomplete information and infer missing information when 
possible
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Early results/works in progress

■ Optimizing computational mechanics applications

■ Taking advantage of commutativity/associativity (+ more)

■ Optimizing applications with GPU offloading

■ Taking advantage of semantic equivalence between different 
data representations, etc.
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Computational mechanics

■ Target: multi-scale computational mechanics codes

■ Loosely coupled problem as in intro

■ Different subdomains use different time steps (smaller time 
steps for subdomains that need more accuracy)

■ Approach applies to other problems

■ Building multi-scale, loosely-coupled versions of peridynamics 
(Parks)
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Coupling trees

■ Two basic operations:

■ LeafSolve: solve a single subdomain at a given time step

■ Couple: merge solutions from two subdomains to form 
“larger” subdomain
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Optimizing coupling trees

■ Couple is associative and commutative

■ Couple’s operands are also independent (parallelizable)

■ Additional restriction based on domain: all domains at a given time step 
must be coupled before coupling with domains at other time steps

■ Can be integrated into basic transformation rules:

■ Each operand has time step information

■ Time step of Couple(a, b) result is max(a, b)

■ Couple only associative if all operands are at the same time step
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Optimizing coupling trees

■ Cost models for LeafSolve and Couple

■ LeafSolve: based on size of subdomain

■ Couple: based on size of interface between coupled 
subdomains, and time step ratio of subdomains

■ Built heuristic based on costs

■ Attempts to produce balanced trees while minimizing overall 
cost and respecting constraints on coupling
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Results

■ Compared to two other variants:

■ “Metis-numbered” – the initial tree order provided by the application writer

■ “Naive recursive” – using the same scheduling heuristic and constraints without 
taking into account timestep-based cost models
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Takeaways

■ Exploiting semantic information key to getting good performance

■ Transformation rules let system determine which coupling 
trees are legal

■ Cost models let system determine which orders to use

■ Both are necessary!

■ Todos

■ Enrich domain semantics

■ Support changing time steps, changing decomposition in 
response to accuracy cost models

■ Extend to other applications
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GPU offloading

■ One approach to heterogeneous computing: offload 
computationally-intensive libraries to GPU

■ Advantages

■ Easy to program (just replace library calls!)

■ Disadvantages

■ No notion of how library calls interact

■ Existing library-based approaches either

■ Take control of all communication, introducing overhead 
(CULA)

■ Leave communication up to the programmer, losing 
programmability (Cublas)
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Example
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1. BLAS( A x B = C ); //matrix multiply
2. BLAS( B x C = D ); //matrix multiply
3. BLAS( C x D = E ); //matrix multiply

CPU
Send	  A,	  B

GPU

Start	   C	  =	  A	  *	  B
 

D	  =	  B	  *	  C
 

E	  =	  C	  *	  D
 

   

Receive	  E

 

(b)	  Communica;on	  op;mized

CPU
Send	  A,	  B

GPU

Start	   C	  =	  A	  *	  B

D	  =	  B	  *	  C

E	  =	  C	  *	  D

Receive	  C

Send	  B,	  C
Receive	  D

Send	  C,	  D
Receive	  E

(a)	  Communica;on	  un-‐op;mized

Write/	  
Read	  E

Write/	  
Read	  E
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What are my options?

■ Compiler analysis?

■ Imprecision is an issue

■ Conservative estimate of what is accessed → too much communication

■ Scalability is an issue

■ Large, modular programs; same code being used in different ways

■ DSM?

■ Granularity is an issue (page based)

■ Fixed mapping between GPU and CPU address spaces

■ What if data is too big for GPU?

■ No semantic information

■ Cannot do more interesting mappings
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Solution: semantics-aware communication 
optimization

■ Hybrid static/dynamic approach

■ Augment libraries with information about what data needs to be read/
written, any data transformations

■ Semantics-aware run-time tracks data, eliminates unnecessary movement

■ Essentially, treat GPU memory as a cache

■ Tracks data at the granularity of libraries

■ Transparently performs data-layout changes (e.g., column-major to 
row-major)

■ Dynamic tracking of data means precise data movement

■ Keeps data up-to-date on both devices

■ No extra communication

19
Wednesday, March 20, 13



X-Stack PI meeting	
 March 20, 2013

SemCache
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SemCache generalized

■ Does not have to be direct mapping between CPU data and GPU data

■ Can change data layout (column-major to row-major)

■ Can store pre-computed data

■ Key insight: make a semantic link between CPU data and GPU data
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Caching	  Directory

CPU
Start	  Address

StatusCPU
End	  Address

GPU	  
Start	  Address

Communica;on	  Cache

CPU
Start	  Address

GPU	  Address	  	  	  	  	  	  	  	  	  	  	  Pre-‐
computed	  Value

	   Computa;on	  Cache
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Leads to drop-in library replacement
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CUBLAS code to perform matrix multiply, with all communication explicitly managed by the 
programmer: 

1. cudaMalloc(A) //Allocate space on device memory
2. cudaMalloc(B) //Allocate space on device memory
3. cudaMalloc(C) //Allocate space on device memory
4. cublasSetMatrix(A) //Move matrix A to device
5. cublasSetMatrix(B) //Move matrix B to device
6. cublasSetMatrix(C) //Move matrix C to device
7. cublasDgemm(TRANSA,TRANSB,M,N,K,ALPHA,

   A,LDA,B,LDB,BETA,C,LDC)
8. cublasGetMatrix(C) //Get matrix C from device

SemCache-enhanced version of matrix multiply:
1. SemCacheDgemm(TRANSA,TRANSB,M,N,K,ALPHA,

   A,LDA,B,LDB,BETA,C,LDC)
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Results

■ Same computational mechanics code as before
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Takeaways

■ SemCache is a generic run-time system

■ Instantiated by semantic information provided by libraries

■ What data is read/written

■ Semantic link between CPU data and GPU data

■ Todos:

■ Language for generating library information (currently 
provided programmatically)

■ Support for multi-GPU/multi-CPU systems

■ Cost-model-driven offloading decisions
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