SLEEC: Semantics-rich Libraries

for Effective Exascale

Computation
Milind Kulkarni, Arun
Prakash,Vijay Pai and Sam Michael Parks
Midkiff
P Sandia
URDUE National
UNIVERSITY. Laboratories

https://engineering.purdue.edu/SLEEC

Wednesday, March 20, 13

https://engineering.purdue.edu/SLEEC
https://engineering.purdue.edu/SLEEC

Motivation

" Modern computational science applications composed of many
different libraries

® Computational libraries, communication libraries, data
structure libraries, etc.

" Peridigm, developed by Mike Parks, builds on 10 different
Trilinos libraries

® Fach library has its own idioms and expected usage

® Determining right way to compose and use libraries to solve a
problem is difficult

X-Stack Pl meeting March 20,2013

Wednesday, March 20, 13

Motivation: Compositional complexity

= Consider loosely-coupled multi-scale computational mechanics
problem (developed by co-Pl Arun Prakash)

® Must determine right way to decompose problem, couple
separate solutions, etc.

S-level Multi-scale
9 Leafnodes (finest level models)

4 processors —

X-Stack Pl meeting March 20,2013

Wednesday, March 20, 13

Motivation: Compositional complexity

Simple case: fixed number of
subdomains, only consider
how to couple them together

Vast space of configurations:
8 subdomains — 35K
possible schedules

Large variation in
performance of different
orders

Exploration of different
variants requires knowledge
of domain semantics, cost
estimates

X-Stack Pl meeting March 20,2013

Wednesday, March 20, 13

Motivation: Difficult interaction between libraries

® Peridigm: computational peridynamics code

® Allows modeling of materials under
stress without explicit accounting for
discontinuities (fractures, etc.)

= Built on Trilinos components

m Set of computation and communication
libraries

Before

= Requires careful coordination of data
movement operations to manage shadow
data, etc. needed by solvers

= But data movement requirements can
be directly inferred from which
equations are being solved

X-Stack Pl meeting March 20,2013

Wednesday, March 20, 13

SLEEC: Principles

m Abstractions carried by domain libraries

= Often a lot of semantics “in the head” of domain scientists, or
even captured by library, but not communicated to compiler

m Need effective annotation language for capturing semantics
= Compiler should be domain agnostic

m Same infrastructure used for optimization and transformation
regardless of domain

m Need common IR for capturing abstractions
= Compiler should be able to optimize for various objectives
® Do not want to focus solely on performance

= Need generic optimization ability and cost models

X-Stack Pl meeting March 20,2013

Wednesday, March 20, 13

SLEEC: Overview

lterative Common Project Scope

Existing Librari Refinement Annotation
xisting Libraries Language Domain-specificcompiler

Library Transformations,

ASTs, Heuristics etc.

Annotations

Domain 2

Library 2
Library

Annotations Generic Extensible

(Semantics-aware)
Compiler

B S—

Cross-Domain Optimized
Application Domain-specific
4 Programs Application

L ;

| 4 \.

(-|—|TraditionaICOmpiIer
|

DomainN

(Library N
Library

Annotations

W SRR SRR SRR SRR SRR SRR SRR SRR SRR e e —
L ’

S S S SRR WS WS WS WS W w— w— - —
-3 -
S S G G G G G S S G S S . .-

~
|
|
|

X-Stack Pl meeting March 20,2013

Wednesday, March 20, 13

SLEEC: Components

= Annotation language for capturing semantic properties of
domain libraries

" High-level intermediate representation to represent programs
that use annotated domain libraries

® Transformation strategies that leverage annotations to perform
semantics-driven code transformations

® Optimization heuristics that use domain-specific cost models to
find more efficient program variants

" [terative refinement techniques that let the compiler work with
incomplete information and infer missing information when
possible

X-Stack Pl meeting March 20,2013

Wednesday, March 20, 13

Early results/works in progress

= Optimizing computational mechanics applications
® Taking advantage of commutativity/associativity (+ more)
= Optimizing applications with GPU offloading

® Taking advantage of semantic equivalence between different
data representations, etc.

X-Stack Pl meeting March 20,2013

Wednesday, March 20, 13

Computational mechanics

® Target: multi-scale computational mechanics codes
® | oosely coupled problem as in intro

® Different subdomains use different time steps (smaller time
steps for subdomains that need more accuracy)

Subdomain A [[, +AT

Subdomain B Iy | o [,+m AL

Time Subscripts IU I ¢ L

® Approach applies to other problems

® Building multi-scale, loosely-coupled versions of peridynamics
(Parks)

X-Stack Pl meeting March 20,2013

Wednesday, March 20, 13

Coupling trees

" Two basic operations:

" | eafSolve:solve a single subdomain at a given time step

" Couple: merge solutions from two subdomains to form
“larger” subdomain

X-Stack Pl meeting March 20,2013

Wednesday, March 20, 13

Optimizing coupling trees

Couple is associative and commutative

jo=dp, domde

Couple’s operands are also independent (parallelizable)

Additional restriction based on domain: all domains at a given time step
must be coupled before coupling with domains at other time steps

Can be integrated into basic transformation rules:
® Fach operand has time step information
= Time step of Couple(a, b) resultis max(a, b)

» Couple only associative if all operands are at the same time step

X-Stack Pl meeting March 20,2013

Wednesday, March 20, 13

Optimizing coupling trees

= Cost models for LeafSolve and Couple
m | eafSolve: based on size of subdomain

® Couple: based on size of interface between coupled
subdomains, and time step ratio of subdomains

® Built heuristic based on costs

m Attempts to produce balanced trees while minimizing overall
cost and respecting constraints on coupling

X-Stack Pl meeting March 20,2013

Wednesday, March 20, 13

Results

® Compared to two other variants:

m “Metis-numbered” — the initial tree order provided by the application writer

® “Naive recursive” — using the same scheduling heuristic and constraints without
taking into account timestep-based cost models

-&~ Domain-Specific Recursive
- Metis-Numbered
-~ Naive Recursive

-&~ Domain-Specific Recursive
- Metis-Numbered
-~ Naive Recursive

w
©

N
o,

Runtime(s)
Runtime(s)

N
o

—h
o

20 30 20 30
No. Threads No. Threads

cube stargrain

X-Stack Pl meeting March 20,2013

Wednesday, March 20, 13

Takeaways

m Exploiting semantic information key to getting good performance

= Transformation rules let system determine which coupling
trees are legal

m Cost models let system determine which orders to use
= Both are necessary!

= Todos
® Enrich domain semantics

= Support changing time steps, changing decomposition in
response to accuracy cost models

= Extend to other applications

X-Stack Pl meeting March 20,2013

Wednesday, March 20, 13

GPU offloading

One approach to heterogeneous computing: offload
computationally-intensive libraries to GPU

Advantages

m Fasy to program (just replace library calls!)
Disadvantages

= No notion of how library calls interact
Existing library-based approaches either

® Take control of all communication, introducing overhead
(CULA)

m | eave communication up to the programmer, losing
programmability (Cublas)

X-Stack Pl meeting March 20,2013

Wednesday, March 20, 13

Example

BLAS(A x B = C); //matrix multiply
BLAS(B x C = 1)); //matrix multiply
BLAS(Cx) =FE); //matrix multiply

(a) Communication un-optimized (b) Communication optimized

CPU GPU CPU GPU

Send A, B Send A, B

Send B, C
Receive D D=B*C O o o D=B*C

Send C, D ELC*D Write/ .

: = rite i =
Write/ Receive E) ‘Recelve E E=C*D
Read E U ReadE

X-Stack Pl meeting March 20,2013

Wednesday, March 20, 13

What are my options?

= Compiler analysis?
® |mprecision is an issue
= Conservative estimate of what is accessed = too much communication
® Scalability is an issue
" Large, modular programs; same code being used in different ways
= DSM?
® Granularity is an issue (page based)
® Fixed mapping between GPU and CPU address spaces
" What if data is too big for GPU?
= No semantic information

= Cannot do more interesting mappings

X-Stack Pl meeting March 20,2013

Wednesday, March 20, 13

Solution: semantics-aware communication
optimization

= Hybrid static/dynamic approach

= Augment libraries with information about what data needs to be read/
written, any data transformations

= Semantics-aware run-time tracks data, eliminates unnecessary movement
= Essentially, treat GPU memory as a cache

® Tracks data at the granularity of libraries

= Transparently performs data-layout changes (e.g., column-major to
row-major)

® Dynamic tracking of data means precise data movement
m Keeps data up-to-date on both devices

= No extra communication

X-Stack Pl meeting March 20,2013

Wednesday, March 20, 13

SemCache

CPU CPU GPU
Start Address End Address Start Address

Cache Translation Record

Matrix

Main Memory Cache Directory GPU Memory

X-Stack Pl meeting March 20,2013

Wednesday, March 20, 13

SemCache generalized

" Does not have to be direct mapping between CPU data and GPU data
m Can change data layout (column-major to row-major)
= Can store pre-computed data

m Key insight: make a semantic link between CPU data and GPU data

~ N\

CPU U L GPU \
Start Address End Address Start Address

\Communication Cache

N\

CPU GPU Address Pre-
Start Address computed Value

Computation Cache

Caching Directory

X-Stack Pl meeting March 20,2013

Wednesday, March 20, 13

Leads to drop-in library replacement

CUBLAS code to perform matrix multiply, with all communication explicitly managed by the
programmer:

cudaMalloc (A) //Allocate space on device memory
cudaMalloc (B) //Allocate space on device memory
cudaMalloc (C) //Allocate space on device memory
cublasSetMatrix (A) //Move matrix A to device
cublasSetMatrix (B) //Move matrix B to device
cublasSetMatrix (C) //Move matrix C to device

cublasDgemm (TRANSA, TRANSB, M, N, K, ALPHA,
A,LDA,B,LDB,BETA,C,LDC)
cublasGetMatrix (C) //Get matrix C from device

SemCache-enhanced version of matrix multiply:

SemCacheDgemm (TRANSA, TRANSB, M, N, K, ALPHA,
A,LDA,B,LDB,BETA, C, LDC)

X-Stack Pl meeting March 20,2013

Wednesday, March 20, 13

Results

= Same computational mechanics code as before

CPU

CULA

CUBLAS (Baseline)
" SemCache

0.9

g
foN

o
w

%)
£
=
-
=
S
.;
-
1>
]
»
=
=
]
N
o:
«
£
S
=
4

Rocket32 Cubel4d Cubel0
Inputs

X-Stack Pl meeting March 20,2013

Wednesday, March 20, 13

Takeaways

= SemCache is a generic run-time system

= |nstantiated by semantic information provided by libraries
" What data is read/written
® Semantic link between CPU data and GPU data

" Todos:

® | anguage for generating library information (currently
provided programmatically)

® Support for multi-GPU/multi-CPU systems

® Cost-model-driven offloading decisions

X-Stack Pl meeting March 20,2013

Wednesday, March 20, 13

