
SLEEC: Semantics-rich Libraries
for Effective Exascale

Computation

Milind Kulkarni, Arun
Prakash, Vijay Pai and Sam

Midkiff
Michael Parks

https://engineering.purdue.edu/SLEEC

Wednesday, March 20, 13

https://engineering.purdue.edu/SLEEC
https://engineering.purdue.edu/SLEEC

X-Stack PI meeting	
 March 20, 2013

Motivation

■ Modern computational science applications composed of many
different libraries

■ Computational libraries, communication libraries, data
structure libraries, etc.

■ Peridigm, developed by Mike Parks, builds on 10 different
Trilinos libraries

■ Each library has its own idioms and expected usage

■ Determining right way to compose and use libraries to solve a
problem is difficult

2
Wednesday, March 20, 13

X-Stack PI meeting	
 March 20, 2013

Motivation: Compositional complexity

■ Consider loosely-coupled multi-scale computational mechanics
problem (developed by co-PI Arun Prakash)

■ Must determine right way to decompose problem, couple
separate solutions, etc.

3
Wednesday, March 20, 13

X-Stack PI meeting	
 March 20, 2013

Motivation: Compositional complexity

■ Simple case: fixed number of
subdomains, only consider
how to couple them together

■ Vast space of configurations:
8 subdomains → 135K
possible schedules

■ Large variation in
performance of different
orders

■ Exploration of different
variants requires knowledge
of domain semantics, cost
estimates

4
Wednesday, March 20, 13

X-Stack PI meeting	
 March 20, 2013

Motivation: Difficult interaction between libraries

■ Peridigm: computational peridynamics code

■ Allows modeling of materials under
stress without explicit accounting for
discontinuities (fractures, etc.)

■ Built on Trilinos components

■ Set of computation and communication
libraries

■ Requires careful coordination of data
movement operations to manage shadow
data, etc. needed by solvers

■ But data movement requirements can
be directly inferred from which
equations are being solved

5

Before

After

Wednesday, March 20, 13

X-Stack PI meeting	
 March 20, 2013

SLEEC: Principles

■ Abstractions carried by domain libraries

■ Often a lot of semantics “in the head” of domain scientists, or
even captured by library, but not communicated to compiler

■ Need effective annotation language for capturing semantics

■ Compiler should be domain agnostic

■ Same infrastructure used for optimization and transformation
regardless of domain

■ Need common IR for capturing abstractions

■ Compiler should be able to optimize for various objectives

■ Do not want to focus solely on performance

■ Need generic optimization ability and cost models

6
Wednesday, March 20, 13

X-Stack PI meeting	
 March 20, 2013

SLEEC: Overview

7
Wednesday, March 20, 13

X-Stack PI meeting	
 March 20, 2013

SLEEC: Components

■ Annotation language for capturing semantic properties of
domain libraries

■ High-level intermediate representation to represent programs
that use annotated domain libraries

■ Transformation strategies that leverage annotations to perform
semantics-driven code transformations

■ Optimization heuristics that use domain-specific cost models to
find more efficient program variants

■ Iterative refinement techniques that let the compiler work with
incomplete information and infer missing information when
possible

8
Wednesday, March 20, 13

X-Stack PI meeting	
 March 20, 2013

Early results/works in progress

■ Optimizing computational mechanics applications

■ Taking advantage of commutativity/associativity (+ more)

■ Optimizing applications with GPU offloading

■ Taking advantage of semantic equivalence between different
data representations, etc.

9
Wednesday, March 20, 13

X-Stack PI meeting	
 March 20, 2013

Computational mechanics

■ Target: multi-scale computational mechanics codes

■ Loosely coupled problem as in intro

■ Different subdomains use different time steps (smaller time
steps for subdomains that need more accuracy)

■ Approach applies to other problems

■ Building multi-scale, loosely-coupled versions of peridynamics
(Parks)

10
Wednesday, March 20, 13

X-Stack PI meeting	
 March 20, 2013

Coupling trees

■ Two basic operations:

■ LeafSolve: solve a single subdomain at a given time step

■ Couple: merge solutions from two subdomains to form
“larger” subdomain

11
Wednesday, March 20, 13

X-Stack PI meeting	
 March 20, 2013

Optimizing coupling trees

■ Couple is associative and commutative

■ Couple’s operands are also independent (parallelizable)

■ Additional restriction based on domain: all domains at a given time step
must be coupled before coupling with domains at other time steps

■ Can be integrated into basic transformation rules:

■ Each operand has time step information

■ Time step of Couple(a, b) result is max(a, b)

■ Couple only associative if all operands are at the same time step

12

+ C

BA

+

A +

CB

+

+

BA

+

AB

Wednesday, March 20, 13

X-Stack PI meeting	
 March 20, 2013

Optimizing coupling trees

■ Cost models for LeafSolve and Couple

■ LeafSolve: based on size of subdomain

■ Couple: based on size of interface between coupled
subdomains, and time step ratio of subdomains

■ Built heuristic based on costs

■ Attempts to produce balanced trees while minimizing overall
cost and respecting constraints on coupling

13
Wednesday, March 20, 13

X-Stack PI meeting	
 March 20, 2013

Results

■ Compared to two other variants:

■ “Metis-numbered” – the initial tree order provided by the application writer

■ “Naive recursive” – using the same scheduling heuristic and constraints without
taking into account timestep-based cost models

14

cube stargrain

Wednesday, March 20, 13

X-Stack PI meeting	
 March 20, 2013

Takeaways

■ Exploiting semantic information key to getting good performance

■ Transformation rules let system determine which coupling
trees are legal

■ Cost models let system determine which orders to use

■ Both are necessary!

■ Todos

■ Enrich domain semantics

■ Support changing time steps, changing decomposition in
response to accuracy cost models

■ Extend to other applications

15
Wednesday, March 20, 13

X-Stack PI meeting	
 March 20, 2013

GPU offloading

■ One approach to heterogeneous computing: offload
computationally-intensive libraries to GPU

■ Advantages

■ Easy to program (just replace library calls!)

■ Disadvantages

■ No notion of how library calls interact

■ Existing library-based approaches either

■ Take control of all communication, introducing overhead
(CULA)

■ Leave communication up to the programmer, losing
programmability (Cublas)

16
Wednesday, March 20, 13

X-Stack PI meeting	
 March 20, 2013

Example

17

1. BLAS(A x B = C); //matrix multiply
2. BLAS(B x C = D); //matrix multiply
3. BLAS(C x D = E); //matrix multiply

CPU
Send	 A,	 B

GPU

Start	 C	 =	 A	 *	 B

D	 =	 B	 *	 C

E	 =	 C	 *	 D

Receive	 E

(b)	 Communica;on	 op;mized

CPU
Send	 A,	 B

GPU

Start	 C	 =	 A	 *	 B

D	 =	 B	 *	 C

E	 =	 C	 *	 D

Receive	 C

Send	 B,	 C
Receive	 D

Send	 C,	 D
Receive	 E

(a)	 Communica;on	 un-‐op;mized

Write/	
Read	 E

Write/	
Read	 E

Wednesday, March 20, 13

X-Stack PI meeting	
 March 20, 2013

What are my options?

■ Compiler analysis?

■ Imprecision is an issue

■ Conservative estimate of what is accessed → too much communication

■ Scalability is an issue

■ Large, modular programs; same code being used in different ways

■ DSM?

■ Granularity is an issue (page based)

■ Fixed mapping between GPU and CPU address spaces

■ What if data is too big for GPU?

■ No semantic information

■ Cannot do more interesting mappings

18
Wednesday, March 20, 13

X-Stack PI meeting	
 March 20, 2013

Solution: semantics-aware communication
optimization

■ Hybrid static/dynamic approach

■ Augment libraries with information about what data needs to be read/
written, any data transformations

■ Semantics-aware run-time tracks data, eliminates unnecessary movement

■ Essentially, treat GPU memory as a cache

■ Tracks data at the granularity of libraries

■ Transparently performs data-layout changes (e.g., column-major to
row-major)

■ Dynamic tracking of data means precise data movement

■ Keeps data up-to-date on both devices

■ No extra communication

19
Wednesday, March 20, 13

X-Stack PI meeting	
 March 20, 2013

SemCache

20

Main Memory GPU MemoryCache Directory

Matrix

Matrix

CPU
Start Address

StatusCPU
End Address

GPU
Start Address

Cache Translation Record

Wednesday, March 20, 13

X-Stack PI meeting	
 March 20, 2013

SemCache generalized

■ Does not have to be direct mapping between CPU data and GPU data

■ Can change data layout (column-major to row-major)

■ Can store pre-computed data

■ Key insight: make a semantic link between CPU data and GPU data

21

Caching	 Directory

CPU
Start	 Address

StatusCPU
End	 Address

GPU	
Start	 Address

Communica;on	 Cache

CPU
Start	 Address

GPU	 Address	 	 	 	 	 	 	 	 	 	 	 Pre-‐
computed	 Value

	 Computa;on	 Cache

Wednesday, March 20, 13

X-Stack PI meeting	
 March 20, 2013

Leads to drop-in library replacement

22

CUBLAS code to perform matrix multiply, with all communication explicitly managed by the
programmer:

1. cudaMalloc(A) //Allocate space on device memory
2. cudaMalloc(B) //Allocate space on device memory
3. cudaMalloc(C) //Allocate space on device memory
4. cublasSetMatrix(A) //Move matrix A to device
5. cublasSetMatrix(B) //Move matrix B to device
6. cublasSetMatrix(C) //Move matrix C to device
7. cublasDgemm(TRANSA,TRANSB,M,N,K,ALPHA,

 A,LDA,B,LDB,BETA,C,LDC)
8. cublasGetMatrix(C) //Get matrix C from device

SemCache-enhanced version of matrix multiply:
1. SemCacheDgemm(TRANSA,TRANSB,M,N,K,ALPHA,

 A,LDA,B,LDB,BETA,C,LDC)

Wednesday, March 20, 13

X-Stack PI meeting	
 March 20, 2013

Results

■ Same computational mechanics code as before

23

0

0.3

0.6

0.9

1.2

Rocket32 Cube14 Cube10

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

Inputs

CPU
CULA
CUBLAS (Baseline)
SemCache

Wednesday, March 20, 13

X-Stack PI meeting	
 March 20, 2013

Takeaways

■ SemCache is a generic run-time system

■ Instantiated by semantic information provided by libraries

■ What data is read/written

■ Semantic link between CPU data and GPU data

■ Todos:

■ Language for generating library information (currently
provided programmatically)

■ Support for multi-GPU/multi-CPU systems

■ Cost-model-driven offloading decisions

24
Wednesday, March 20, 13

