

Co-Design and X-Stack Coordination

Kathy Yelick,
with input from John Bell, Jackie Chen,
Pat McCormick, Jim Belak,
Ron Brightwell, Thomas Sterling, Dan Quinlan,
Wilf Pinfold, Shekhar Borkar

Application Co-Design Center Interactions

PS = Programming Systems (languages and their implementations, programming libraries, programming environment tools)

This is not just about X-Stack and Co-Design Centers

X-Stack Projects

Other Software

Applications

Co-Design Applications

Other Applications

Beyond the History

- X-Stack needs to do evaluation. Anything else is bad science.
- Co-Design needs to evaluate advanced programming systems; this will improve software development costs in the long term
- Not about specific individuals (aka postdocs) but full team efforts

The Real Exascale Communication Challenge

$$\begin{split} & \underbrace{\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u)}{\partial x} + \frac{\partial (\rho v)}{\partial y} + \frac{\partial (\rho w)}{\partial z} = 0}_{\begin{array}{c} \frac{\partial (\rho u)}{\partial t} + \frac{\partial (\rho u^2)}{\partial x} + \frac{\partial (\rho uv)}{\partial y} + \frac{\partial (\rho uw)}{\partial z} = -\frac{\partial \rho}{\partial x} + \frac{1}{Re_r} \left[\frac{\partial \tau_{xx}}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + \frac{\partial \tau_{xz}}{\partial z} \right] \\ & \underbrace{\frac{\partial (\rho v)}{\partial t} + \frac{\partial (\rho uv)}{\partial x} + \frac{\partial (\rho v^2)}{\partial y} + \frac{\partial (\rho vw)}{\partial z} = -\frac{\partial \rho}{\partial y} + \frac{1}{Re_r} \left[\frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \tau_{yy}}{\partial y} + \frac{\partial \tau_{yz}}{\partial z} \right] \\ & \underbrace{\frac{\partial (\rho w)}{\partial t} + \frac{\partial (\rho uw)}{\partial x} + \frac{\partial (\rho vw)}{\partial y} + \frac{\partial (\rho w^2)}{\partial z} = -\frac{\partial \rho}{\partial z} + \frac{1}{Re_r} \left[\frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} + \frac{\partial \tau_{zz}}{\partial z} \right]}_{\begin{array}{c} \frac{\partial (\rho w)}{\partial z} + \frac{\partial (\rho uw)}{\partial y} + \frac{\partial (\rho vw)}{\partial y} + \frac{\partial (\rho w^2)}{\partial z} = -\frac{\partial \rho}{\partial z} + \frac{1}{Re_r} \left[\frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} + \frac{\partial \tau_{zz}}{\partial z} \right] \end{split}$$

Interaction Models

Require people at all levels of seniority

Proxy App Model

- Leverages work already done by Co-Design Centers
- Good to get X-Stack started, but limited (easy to misinterpret)

Deep Collaboration Model

- 1-on-1s, ongoing to discuss Application challenges and PS design
- A lot of work, but best alignment; having people in common helps

Hackathon

- Apps folks bring code examples; modified to run on simulators, etc.
- Requires mature systems from X-Stack side

Attend each others meetings

 All-hands meetings are part of (at least) the large X-Stack projects and Co-Design project; Cross-invitations are key

X-Stack Portfolio

D-TEC (Dan Quinlan)

Complete software stack solution, from DSLs to optimized runtime systems code.

X-Tune (Mary Hall)

Unified autotuning framework that integrates programmer-directed and compiler-directed autotuning.

DEGAS (Kathy Yelick)

Hierarchical and resilient programming models, compilers and runtime support.

CORVETTE (Koushik Sen)

Automated bug finding methods to eliminate non- determinism in program execution and to make concurrency bugs and floating point behavior reproducible

XPRESS (Ron Brightwell)

Software architecture and interfaces that exploit the ParalleX execution model, prototyping several of its key components.

GVR (Andrew Chien)

Global view data model for architecture support for resilience.

SLEEC (Milind Kulkarni)

Semantics-aware, extensible optimizing compiler that treats compilation as an optimization problem.

Traleika (Shekhar Borkar)

Exascale programming system, execution model and runtime, applications, and architecture explorations, with open and shared simulation infrastructure.

DynAX (Rishi Khan)

Novel programming models, dynamic adaptive execution models and runtimes.

The Software Stack (source: Bill Harrod)

- Enable DOE applications to take maximum use of future architectures (involves MPI)
- Broaden the base of future applications by improving programmability (may not involve MPI)

X-Stack Stack

 Languages include GPLs and DSLs implemented with compilers and libraries: X10, Swift, UPC Habanero-C (HC). XPI, CAF 2.0.
 SLEEC, SWARM/SCALE, Sketch, Rosette, Legion May after the 10th at MIT – check ipdps, ics, hpdc, pldi

X-Stack Goals and Objectives

Scalability:

Billion-way concurrency, thousand-way on chip with new architectures

Programmability:

Convenient programming

Performance Portability:

Ensure applications can be moved across diverse machines

Resilience:

Support for capturing state and recovering from faults

Energy Efficiency:

Take advantage of low-power designs (may change programming)

Interoperability:

Provide transition path for applications

ExMatEx: Collaborations with X-Stack

Proxy Apps

- PGAS app to be sent (→ DEGAS,...)
- Deep collaborations
 - D-TEC collaboration (via Colella)
- Hackathons
 - Planned with Intel / ETI
- Meetings
 - Several X-Stack reps attended all-hands meeting

ExaCT: Collaborations with X-Stack

Proxy Apps

PGAS app to be sent (→ DEGAS,...)

Deep collaborations

- D-TEC and X-Tune (via Williams)
- Legion and DEGAS (via GASnet)
- Node scheduling / locality (via Shalf)

Hackathons

Planned with Intel / ETI

Meetings

X-Stack reps attended all-hands meeting

Cesar: Collaborations with X-Stack

- Proxy Apps
 - Several uses of NEK-Bone (X-Tune,...)
- Deep collaborations
 - Postdoc hired specifically for this interaction
- Hackathons
 - TBD
- Meetings
 - TBD

Cross-Cutting Issues

ExMatX has a postdoc working on Resilience

- Probably best done by interacting with resilience efforts
- DEGAS (CDs/BLCR), GVR, D-TEC HL/LL, Intel,...

Correctness:

Corvette sensitivity to numerical precision: ExMatEx and ExaCT (in discussions so far)

• Performance:

Pervasive, so may not be separate activity

	- Similators are closely related										
					Haban			SWAR			
					ero-C	CAF	SLEE	M/SCA			Ros-
		X10	Swift	UPC	(HC)	2.0	С	LE	Sketch	XPI	ette
				Resilience	Resilience	Resilience		Resilience		Resilience	
			Automatic	(in	(in	(in	Heterogen	(in		(in	
6	resilience,	progress)	retry	progress)	progress)	progress)	eity	progress)		progress)	

Both Sides Win

- Collaborative model will help X-Stack centers increase impact
- Collaborative model will help Co-Design centers (and apps in general) adapt to future systems and reduce software costs

Metrics

- Joint publications
- Talks on joint work: at Exascale PI in particular

Comments

- Evolutionary vs. revolutionary paths and stack (does it evolve)
- Scoping the collaboration

The X-Stack Programming Model Puzzle Pieces

		X10	Swift	UPC	Haban ero-C (HC)	CAF 2.0	SLEE C	SWAR M/SCA LE	Sketch	XPI	Ros- ette
1	DSL?	No	No	No	No	No	Yes	No	Yes	No	Yes
2	Inter/Intra-	Same	Inter	Both	Both	Same	Neither	Both	Intra	Same	Intra
3	Types of parallelis	Task, Map- Reduce	Task	SPMD	Task → SPMD	SPMD	N/A	Task	Implicit	Tasks	Implicit
	Synch	Conditiona I atomics		Barriers locks →	Finish, Asynch, Phasers Tutures, atomics, Actors	Events, locks, cofence, barriers, finish. → atomics.	N/A	Dependences, codelet chaining, latches, barriers, locks, etc.		Futures Dataflo w	
	Comm	Shared memory		PGAS & collect-ives	Shared mem + {MPI, GASNet}	PGAS & collect-	N/A	Futures, remote codelet s		Active GAS	
6	Energy, resilience,		Automatic retry	Resilience (in progress)	Resilience (in progress)	Resilience (in progress)	Heterogen eity	Resilience (in progress)		Resilience (in progress)	

Project Title	Lead PI(s)	Lead Institution	Description					
Traleika Glacier	Shekhar Borkar	Intel	Simulation infrastructure. Compiler optimization, execution models, and runtime environments. https://sites.google.com/site/traleikaglacierxstack/					
DEGAS	Kathy Yelick	LBNL	Hierarchical programming models, language design, compilers, communications layer, adaptive runtime, resilience. http://crd.lbl.gov/organization/computer-and-data-sciences/ftg/projects/DEGAS/					
D-TEC: DSL Technology for Exascale	Dan Quinlan	LLNL/MIT	Complete solution for X-Stack: DSL, compilers, abstract machine model, refiner and transformation framework, adaptive runtime systems. http://www.dtec-xtack.org					
XPRESS	Ron Brightwell	Sandia/IU	Runtime system implementing Parallex, co-designed with an OS. Framework to translate MPI and OpenMP legacy codes. http://xpress.sandia.gov					
DynAX: Adaptive X-Stack	Rishi Khan	ETI	Programming Models, Compilers and Runtime Systems for Dynamic Adaptive Ev Driven Execution Models. http://www.etinternational.com/xstack					
Autotuning for Exascale	Mary Hall	Unv. Utah	A unified autotuning framework that seamlessly integrates programmer-directed and compiler-directed autotuning. http://ctop.cs.utah.edu/x-tune/					
Global View Resilience Andrew Chien UC/ANL CORVETTE Koushik Sen LBNL SLEEC Milind Kulkarni Purdue		UC/ANL	Global view data model to enable application-informed, portable resilience. End-to-end approach for incremental adoption and evaluation of architecture support for resilience. http://gvr.cs.uchicago.edu					
		LBNL	Automated bug finding methods to eliminate non- determinism in program execution and to make concurrency bugs and floating point behavior reproducible. http://crd.lbl.gov/organization/computer-and-data-sciences/ftg/projects/corvette					
		Purdue	Annotation language. Function semantics exposed in DSL libraries. Design and development of a semantics-aware, extensible optimizing compiler that treats compilation as an optimization problem. https://engineering.purdue.edu/~milind/sleec/					