
1 

Critical Technology Evaluations 
Technology Description Status 

Parallel	
  Language Targeting	
  distributed	
  SCALE	
  from	
  PIL Complete 

Parallel	
  Language Sparse	
  data	
  representation	
  in	
  PIL Identified 

Multi-­‐Node	
  
Parallelization 

Parallelization	
  of	
  “twoel”	
  section	
  of	
  optimized	
  SCF	
  code	
  with	
  MPI	
  and	
  SWARM	
  
multi-­‐node 

Evaluating 

Multi-­‐Node	
  
Parallelization 

Parallelization	
  of	
  “diagon”	
  section	
  of	
  optimized	
  SCF	
  code	
  with	
  MPI	
  and	
  SWARM	
  
multi-­‐node 

Evaluating 

Kernel	
  
Comparison 

Comparison	
  of	
  parallelized	
  SCF	
  kernel	
  to	
  the	
  original	
  global	
  arrays	
  version	
  in	
  
NWChem 

Complete 

Compiler Automatic	
  single-­‐node	
  parallelization	
  from	
  mappable	
  C	
  to	
  SWARM Close	
  to	
  
Completion 

Compiler Dependence	
  computation	
  simplification Completed 

Compiler Simplified	
  polyhedral	
  domain	
  computations	
   Evaluating 

Power	
  Efficient	
  
Data	
  Abstraction	
  
Layer 

Started	
  a	
  theoretical	
  framework	
  called	
  “Group	
  Locality”	
  that	
  will	
  be	
  used	
  to	
  
identify	
  opportunities	
  for	
  data	
  manipulation	
  such	
  as	
  compression 

Identified 

Power	
  Efficient	
  
Data	
  Abstraction	
  
Layer 

Survey	
  of	
  state-­‐of-­‐the-­‐art	
  compression	
  algorithms Evaluating 

Power	
  Efficient	
  
Data	
  Abstraction	
  
Layer 

Working	
  on	
  2	
  measurement	
  frameworks	
   Evaluating 

Application	
  
Development 

Coupled	
   cluster	
   computation	
  using	
   the	
  Tensor	
  Contraction	
  Engine	
   identified	
  as	
  
next	
  NWChem	
  co-­‐design	
  app.	
  Working	
  on	
  C	
  version	
  of	
  tensors. 

Evaluating 

 
   

 
  



2 

 

Summaries of Quarterly Work (Q3) 

UIUC Work 
The major achievement in this quarter is the extension of PIL to target distributed SCALE. 
With the new extension, PIL can be programmed in a Single Program Multiple Data (SPMD) 
fashion. Once an executable is invoked, all Processor Elements (PEs) execute the same 
program concurrently. Each execution instance running on a PE manages local memory 
space and executes independently. Once in need of communication with each other, PIL 
invokes SWARM network APIs to send data to and receive data from remote PEs. A barrier 
API was also implemented for the explicit synchronization across PEs as intended by 
programmers. The PIL API document was updated to version v0.4. It reflects the recent 
changes to enable SPMD PIL programming. The new capabilities are illustrated with 
examples. This document can be found in the deliverables section of the DynAX XstackWiki 
page: https://www.xstackwiki.com/index.php/DynAX#Deliverables. 

ETI Work 
ETI has focused this quarter on further parallelization of the SCF benchmark provided by 
PNNL.  Several potential optimizations were evaluated for increasing the parallelism of SCF 
beyond the improvements to the “twoel” module last quarter.  Descriptions and results for all 
of these optimizations are detailed in the Topic Detail below. 

PNNL Work 

Power Efficient Data Abstraction Layer (PEDAL) 
We are building the underlying infrastructure to guide our design of the Power Efficient Data 
Abstraction Layer (PEDAL) for Rescinded Primitive Data Type Access (RPDTA). PEDAL is 
being leveraged by both this project and the Traleika Glacier project.  
 
In order to understand the interactions between applications and runtime systems we need 
measurement tools and assessment simulators/models to provide insight into data access 
patterns and lifetime, memory composition and structure residencies. We are developing both 
developing both a top-down and a bottom-up measurement framework. 
 
For the top-down approach we are using Valgrind.  This quarter we completed adapting 
Valgrind to SWARM.  The framework measures lifetime in instruction counts, data address 
locations, access pattern and data content.  
==19196== DHAT @awmm mod: WARNING: data output only valid for 64 bit words (e.g., double)!, a dynamic 
heap analysis tool 
==19196== NOTE: This is an Experimental-Class Valgrind Tool 
==19196== Copyright (C) 2010-2012, and GNU GPL'd, by Mozilla Inc 
==19196== Using Valgrind-3.8.1 and LibVEX; rerun with -h for copyright info 
==19196== Command: ./cholesky D 50 10 5 
**19196** Matrix address space is 79be540-7ba69c0 
**19196** Filtering address space 79be540-7ba69c0 
==19196== S First Codelet started 
==19196== [cid, tid, alloc] {I, J, Level, State} (start_inst-end_inst) Type @start_addr-end_addr 
outliers:reads/writes step bytes 



3 

==19196== [3, 0, 1864331] {-1, -1, 0, -1}  (14428016-15222031) RNS*H @79be540-
79c7228 330:389 8 3112 
==19196== [3, 0, 1864331] {-1, -1, 0, -1}  (15211476-15222038) W*S*H @79be540-
79c7228 38:87 8 696 
 
Above is a small excerpt of the tool’s output for a Cholesky SWARM run, aggregating 
Valgrind’s lifetime, address, and pattern information with application information.  A similar 
output (not shown), adds data content as well.  We are currently developing post processing 
tools in order to analyze the information and feed it into high level machine models to assess 
concurrency, lifetime, and residency.  At the current stage we are extracting a dependency 
graph to perform various types of analysis. 
 
Next quarter, we will continue working on the post processing tools and provide concurrency, 
lifetime information under various machine model assumptions.  We will also check for 
potential Valgrind cache integration paths.   

Application Development 
We are developing two NWChem modules for testing and evaluation. This quarter we began 
preparing the second module --- the tensor routines of the Coupled Cluster Computation. The 
computation source code is generated automatically from a description file of the tensor 
equations.  We are rewriting the source code to a more readable human form using a data 
parallel model.  We are providing the description files so that compiler teams can write their 
own automatic code generators. Next quarter, we will perform a complete code rewrite for the 
Coupled Cluster Computation,  provide driver and input/output files, and consult with compiler 
teams on automatic code generators.   

R-Stream compiler work (Reservoir) 
We extended R-Stream to support the production of parrallel code on a multi-core x86 
machine (i.e., a “single node”). The main aspects of this extension are that SWARM features 
such as parallel dependence management, asynchronous gets and macro-based codelet 
declarations are supported. We explain how so in Topic detail “Automatic single-node 
parallelization from mappable C to SWARM.   
 
We also worked on keeping compilation time within desirable boundaries, by identifying the 
main bottleneck occurring when targeting codelet-based programs as the computation of 
dependence polyhedrons, and by finding ways of significantly reducing their computational 
complexity.  Methods for doing so are presented in Topic detail “Dependence computation 
simplification.” 
 
Finally, we also started reducing the practical computational complexity of polyhedral 
operations in our polyhedral engine Jolylib, by making the computation of dual representation 
of polyhedrons optional. This a step toward the general improvement of compilation time in R-
Stream.  

 
  



4 

Topic Detail: 
ETI: Optimization and parallelization of SCF module 

Further optimizations of twoel 

Dynamic workload balancing in SWARM multi-node version 
The twoel function is anN!series of nested loops, with iterator variables i, j, k, and l.  The first 
multi-threaded version we wrote (in Q2) would fetch an i value using an atomic operation, and 
then do all of the j, k, and l work for that i value. The i values do not all represent equal 
amounts of work leading to load balancing issues.  The problem is lessened by fetching 
smaller chunks of work at a time.  We adjusted the atomic op to return a smaller subset of [i,j] 
values to work on, effectively removing the problem of workload imbalance between threads. 
 
The multi-node version assigns i values to compute nodes in a round-robin order causing a 
similar workload imbalance problem; the balance between threads on a node are fairly well 
aligned, but there is no mechanism to line up the threads on a node with the threads on 
another node.  Inter-node work imbalance affects the global sum reduction at the end of twoel, 
as one slow node can delay the whole reduction process from starting.  The effect becomes 
more pronounced as the node count increases; on 128 nodes, we estimate that about 50% of 
the twoel time is spent idle because of inter-node work imbalance. 
 
The problem is made worse by network effects skewing the twoel start times.  At the end of 
the serial section (diagon and dens), the density matrix (g_dens) is broadcast to all compute 
nodes, this serves as input to twoel in the next iteration.  The broadcast of g_dens takes a 
non-zero amount of time, and the data arrives on some nodes earlier than others.  Nodes can 
start as soon as they receive the data, but higher numbered compute nodes start later (on 
average), which means that they finish later (on average). 
 
The above issues make a clear case for balancing the workload between nodes better. 
 
To achieve inter-node workload balance, we added some network code to request work units 
from node 0.  Work is rationed via an atomic op of a progress index on node 0, and the result 
is sent back to the compute node which requested it.  There is a round-trip delay between 
issuing the request and getting the response.  Workers prefetch work requests to hide this 
delay, such that a new request is sent immediately before starting to compute on the work 
request unit the worker had received previously. 
 
The work chunk size must be large enough to cover the network round-trip delay, yet small 
enough to minimize the effects of thread workload imbalance.  We experimented with many 
different chunk sizes, but were unable to find a good balance between these two extremes.  
The work associated with an [i,j] chunk varies so much that increasing the chunk size enough 
to cover the round-trip delay produced considerable workload imbalance.  In the end, we were 
unable to find any chunk size that performed better than the previous version of the code. 
 
In execution traces, we also saw that node 0 started twoel earlier than any other node started, 
and also finished earlier than any other node finished.  This is because node 0 has lower 



5 

latency access to the work allocation machinery, so it was able to start processing the 
requested work earlier, and on average, finish the requested work earlier.  When the work 
allocation machinery runs out of work, node 0 becomes idle first, and the other nodes become 
idle some time later: that time representing the latency of the network transit and associated 
processing.  So, variable access latency of the work allocation machinery is another source of 
work imbalance. 
 
The current implementation represents a hub-and-spokes work topology, where node 0 (the 
hub) has the work and everyone else steals pieces of it.  More complex work stealing 
topologies may improve this.  For instance, each node could maintain a local cache of work 
for the threads on that node, and steal more from node 0 as necessary.  Or the nodes could 
be arranged in a tree, where the amount of work stolen decreases for each level of the tree. 
 
The figure below shows the parallelization at this point. 

 

Optimizations of diagon 
As mentioned in the Q2 report, the twoel step is embarrassingly parallel.  Twoel keeps 
speeding up as you add more nodes; eventually the diagon step becomes the largest 
component of the overall execution time.  During our testing, this happened at around 100 
compute nodes in the SWARM multi-node version.  Diagon uses multiple threads, because it 
uses concurrent MKL versions of lapack/blas functions, but it still only runs on a single 
compute node.  It is desirable to spread the diagon work across nodes if possible, to bring 
the overall execution time down further.  What follows are several steps we took while 
analyzing this problem. 

Distribution of dsymm/dgemm 
In this section we describe the parallelization of the two matrix multiplications after the twoel 
step. The figure below illustrates the parallelism achieved from the work described in this 
section. 



6 

 
 
Diagon starts by doing a similarity transform on g_fock, using g_orbs as the change of basis 
matrix.  In other words, it calculates the following: 
 
 S = O!1 ∗ F ∗ O = OT ∗ F ∗ O 
 
Where F is the g_fock matrix, O is the g_orbs matrix, and S is a new matrix which is similar to 
g_fock. Note that because O is orthogonal, OT = O!1. 
 
In the actual code, this becomes a series of two BLAS calls, using a temporary matrix T to 
store the intermediate result: 
 
 T = F ∗ O (using dsymm, since g_fock is symmetric) 

S = OT ∗ T (using dgemm, transposing g_orbs) 
 
The old g_fock contents are no longer necessary, so the existing matrix is reused to hold the 
new result (S). 
 
These operations can be distributed by having each compute node compute a stripe of the 
output fock matrix.  Each compute node does require a copy of the full input matrices. 
However, the second matrix multiply can be computed solely with the T data generated from 
the first matrix multiply on the same node. 
 
The first operation can be distributed by having each node compute a vertical slice of the 
(temporary) T matrix: 
 
 T[: ,i]   =   F   ∗   O[: ,i] 



7 

 
Where i is the range of columns assigned to the node. 
 
Then, multiplying that slice by the full-sized O results in a fully computed slice of the new F: 
 
S[: ,i]   =   OT   ∗   T[: ,i] 

 
To efficiently gather the g_fock data at the end, it is advantageous for the slice to be 
contiguous in memory, representing the slice i of matrix S column-major order.  In other words, 
from the perspective of the C language (where two-dimensional arrays are in row-major 
order), the result should be written into rows of the output matrix rather than columns.  To that 
end, we use properties of transposition and perform a different operation that gives us the 
same result, in the format we want: 
 

ST[i, : ]   =   TT[i, : ]   ∗   O 



8 

 
Where i is the same range as before, but now represents rows, not columns, of the matrix. 
 
Now that the slice is contiguous in memory, it is easy for the network code to gather the data 
afterwards, simply copying each packet into the right location.  The matrix multiply operations 
are implemented with dgemm, though each node’s operation is n times smaller than the full 
single-node version, where n is the number of nodes. 
 
In practice, the distributed matrix multiplications requires additional network traffic to set up.  
Specifically, the g_fock and g_orbs matrices need to be broadcast to all nodes.  The latency 
of distributing g_orbs can be hidden because it is calculated before twoel, and not needed 
until the diagon step of the next iteration.  The latency of distributing g_fock is critical, 
because it must occur directly after twoel reduces the matrix and before diagon begins.  The 
net result was that the matrix multiply operations themselves were faster, but the overhead of 
the additional network traffic prevented an overall increase in measured performance. 

Distribution of dsyev using scalapack 
In this section we describe the parallelization of the eigenvector solver after the matrix 
multiplications. The figure below illustrates the parallelism achieved from the work described 
in this section. 

 



9 

 
The most costly part of diagon is the call to the blas function “dsyev”, which finds 
eigenvectors and eigenvalues of a symmetric matrix.  The optimized MKL version of this 
function makes use of multiple threads, but is limited to running on a single node.  dsyev 
represents about 70% of the overall diagon time, making it an obvious candidate for 
distributing across nodes. 
 
As a first step of learning how best to distribute the dsyev, we decided to try scalapack, which 
has an existing implementation of distributed dsyev, called “pdsyev”. 
 
We adapted the multi-node SWARM version of SCF to be launched successfully by 
mpirun/mpiexec, and adapted it to initialize the MPI and BLACS environments properly.  
Since diagon is called from the main thread, it is possible to make MPI and scalapack calls 
within diagon.  The program splits up the g_fock matrix into tiles, and defines a pattern that 
maps the compute nodes to tiles, using scalapack’s two dimensional block-cyclic distribution 
[see http://netlib.org/scalapack/slug/node75.html].  Each node allocates a temporary array to 
hold the tiles it considers “local”, the global data is copied into these local buffers, and then 
pdsyev is called to calculate the eigenvectors.  Finally, the result data is copied back to node 
0, to perform the last parts of the diagon work. 
 
Unfortunately, when diagon is called from the main thread, it is unable to make use of 
SWARM networking and control flow constructs.  Thus, this experiment was done 
independently of the dgemm distribution work mentioned above. 
 
We saw the performance vary wildly with the parameters (tile size and pattern).  It seems that 
larger tiles are always better, but of course, a larger tile size results in fewer total tiles.  If the 
tile count is larger than the node count, not all of the nodes will take part in the operation. 
 
The best numbers we saw were for a 375x375 tile size.  The g_fock and g_orbs matrices are 
3750x3750, for this input file, so there are 100 tiles in total, arranged in a 10x10 grid. 
 
Node count Eigensolver Total diagon 

(single node) 95.20 125.58 

4 114.37 141.38 

8 106.51 139.66 

16 79.21 110.69 

32 74.53 104.20 

64 70.42 98.11 

128 70.51 100.56 



10 

 
The above table and chart show the results of using scalapack to find the eigenvectors in 
diagon.  The table contains the execution times in seconds; the chart shows the execution 
time relative to the previous (single-node) execution time.  The “PDSYEV” line is relative to 
the standalone dsyev time; the “Diagon” line is relative to the standalone diagon time.  
Somewhere between 8 and 16 nodes, Scalapack reached the performance of the non-
distributed version on a single node.  After 16 nodes, performance continued to increase 
slowly.  At 64 nodes, the performance improvement over a single node was 35% for the 
eigensolver itself, and 25% for diagon as a whole.  After 64 nodes, this performance increase 
stopped.  The lack of speedup between 64 and 128 nodes was probably due to the large tile 
size; some nodes had no local data to work on. 

Problems and possible future work 
In this section we describe future work on parallelization and data distribution for the entire 
diagon and dens computations. The figure below illustrates the parallelism we hope to 
achieve in future work. “?” indicates that the amount and type of data distribution is not yet 
known although the objective is to minimize the data movement and overlap computation with 
data movement as much as possible. 

 
 
The matrix multiplication and the dsyev parallelization both suffered from overheads of data 
movement.  There are two types of data movement we must consider.  We define these as 
internal data movement and external data movement (to indicate where they sit relative to the 



11 

matrix operations).  External data movement explicitly moves the data around such that it is in 
the right form, such as broadcasting g_fock or g_orbs ahead of time, or re-assembling the 
stripes of g_fock afterwards.  Internal data movement is the communication which occurs 
during the process of the matrix operation, for instance, the scalapack matrix multiply may 
fetch copies of non-local tiles from matrices A and B to compute a tile of C.  Both of these 
types of data movement can cause latency, which can lead to increases in execution time if 
the latency is not hidden with overlapping computation.  The goal is to minimize the execution 
time of diagon as a whole. 
 
In the first experiment, the data was well-placed for the matrix multiplications, with no internal 
data movement at all, but the supporting external data movement was costly.  In the second 
experiment, the dsyev work was not distributed well, and thus the gains of extra CPU 
resources were mostly lost due to internal synchronization and data movement overheads.  
To use distributed computing power more effectively, we need to reduce the total overhead of 
the data movement.  The extent to which this is possible remains to be evaluated. 
 
In general, we want a data distribution that minimizes data movement while providing enough 
concurrency to keep the nodes busy.  It is possible that a different set of parameters, which 
were not immediately apparent to us, would do a much better job of achieving those goals.  
Scalapack only provides an API to describe the high level data distribution, but gives us no 
indication as to the right distribution to use.  Other than measuring wallclock time, we don’t 
have any visibility on what happens internally, or how we can improve that process.  More in-
depth study is required to find a more optimal tiling pattern, both for the eigensolver itself, and 
for the other operations which surround it (tridiagonalization, orthogonal matrix generation, 
matrix multiplication). 
 
The use of scalapack presents a second problem, which is that it follows a bulk synchronous 
schedule, with synchronization and data being sent at fixed points in the computation.  It does 
not allow unrelated computations to overlap where CPU resources would otherwise be sitting 
idle, and it does not allow data movement to overlap with computation.  This unnecessary 
synchronization hinders performance, and needs to be addressed.  A tuned asynchronous 
solution would almost certainly be faster overall. 
 
An ideal data layout would support the computation of each stage of diagon, with a minimum 
of internal data movement (communication inside each stage) and external data movement 
(data shuffling between steps).  An ideal control flow would minimize synchronization, and 
allow the necessary data movement to overlap with computation as much as possible, to 
minimize the overhead and maximize the performance.  Improvements in both of these areas 
would benefit diagon. 
 
The dsyev function is made up of three stages, implemented as three separate functions.  
These functions are: 
 
* dsytrd: double precision symmetric tridiagonalize 
* dorgtr: double precision generate orthogonal matrix from elemental reflectors 
* dsteqr: double precision tridiagonal matrix eigensolver 
 
The following table shows the total number of seconds (wall-clock time, not CPU time; 
average of three runs) spent in various parts of diagon, through all 17 iterations required to 



12 

converge for a particular input file.  These numbers represent the amount of processing 
needed for each step, without the overhead of network data movement.  As such, they are 
taken from a single-node diagon, with no scalapack and no striped matrix multiplications.  
 
dsyev dsyev dsyev   

dsytrd dorgtr dsteqr (other) total 

30.08 24.51 53.03 44.77 152.39 

28.78 24.46 51.77 46.14 151.15 

29.18 25.26 53.47 43.99 151.90 
 
The “other” column of the above table includes 3 matrix multiplications (the similarity 
transformation described above, and one other multiply), an n!  search for the maximum 
absolute value of off-diagonal elements, and other assorted minutiae. 
 
Each of these steps may perform differently for any given data tiling pattern.  Future work on 
this problem should take this into account, and work toward a tiling pattern or a series of 
patterns which minimize the overall data movement overhead. 
 
Reservoir: Automatic single-node parallelization from mappable 
C to SWARM 
We developed support for generating parallel SWARM code from sequential C by designing 
and implementing a SWARM back-end and pretty-printer to Reservoir’s R-Stream compiler. 
We started from the generic codelet generation engine (developed in Q1 and Q2) in the R-
Stream polyhedral mapper, which uses the OCR back-end.  We extended it to support the 
following SWARM features. 

Parallel dependence management 
In SWARM, each codelet defines its own dependences with other codelets in parallel using 
tag tables. Due to dependence declaration constraints in OCR, the R-Stream OCR backend 
uses centralized, sequential dependence declaration, which translates into a sequential cost 
of O(V2) for starting a parallel code with V codelets.  
 
By opposition, with the SWARM back-end, this cost is reduced to O(V). This cost can even be 
further reduced through further optimizations, which will distribute the scheduling of tasks.  
This difference in sequential startup cost may not be significant when V is small -- such as the 
single-node parallel programs we are producing as a first step -- but will be critical at 
Exascale where V is large.  
 
Support for parallel dependence definitions required adapting the polyhedral mapper, as a 
dependence between codelets A and B translates to a “put” operation in A and a matching 
“get” operation in B (two matching “dependence operations”).  

Asynchronous gets 



13 

SWARM enables asynchronous “get” operations by associating a “get” operation with a re-
scheduling of the codelet calling the “get.” This requires support in the generated code, which 
has to yield control when a get is called. The advantage of supporting this SWARM feature is 
that no codelet is waiting for a tag to become available and the processors can be fully 
utilized.  

Macro-based codelet declarations 
SWARM uses macros to hide the internal complexity of declaring codelets from the user (in 
our case, from the parallelizing compiler). Declaring a codelet boils down to declaring a 
“codelet descriptor” (which carries meta-data about the codelet) and specify the code for its 
corresponding codelet.  
 
Producing macros is often challenging for a compiler that relies on a type-safe system since 
macros are not always isomorphic to function calls. Also, some of the SWARM macros entail 
syntax elements that diverge from standard C statements. This is mostly the case for the 
macros defining codelet (descriptors), as they look just like a function definition except that 
they don’t have opening and closing brackets, and that their parameters do not exactly match 
those of the underlying codelet function.  
 
Support for this macro system was obtained by modifying R-Stream’s C pretty-printer to 
define exceptions for SWARM codes. Basically, SWARM codelets are marked when 
generated, and the behavior of the C pretty-printer is dependent upon the presence of 
markers.  
To illustrate this, the figure below compares code for a pthread-based thread with code 
generated for a Swarm codelet.  
 
/*	
  Pthread	
  code	
  example	
  */ 
void	
   *	
   function(void	
   *);	
   //	
   forward	
   declaration	
  
void	
  *	
  function(void	
  *	
  THIS)	
  {	
   	
    
	
  	
  	
  	
  //	
  code	
   
} 
/*	
  Swarm	
  code	
  example	
  */ 
swarm_CodeletDesc_DECL_LOCAL(function); 
swarm_CodeletDesc_IMPL_LOCAL_NOCANCEL(function,	
  function,	
  swarm_c_void,	
  swarm_c_void) 
	
  	
  	
  	
  //	
  code 
swarm_CodeletDesc_IMPL_END; 

Further work 
The code currently generated is untuned and limited to parallelization across multiple cores 
on a single node. We plan to extend this to multiple nodes using SWARM’s nw interface. Also, 
we plan to consider different heuristics for scheduling and tile size selection that are more 
specific to codelet computations, as well as optimizations of the R-Stream runtime layer for 
SWARM.  

Reservoir: Dependence computation simplification 
Our experience with the polyhedral representation, used by R-Stream, is that it enables a 
clean, mathematical and intuitive formulation of program parallelization and optimization 
algorithms. These advantages come with the need for controlling the computational 



14 

complexity of these algorithms, which often have exponential complexity in the number of 
dimensions of the manipulated polyhedrons.  
 
In programming models that require expressing the program as a notional graph of codelets 
(such as SWARM, CnC and OCR), a naive way of computing dependences between two 
codelets is to check whether they access common data that at least one of the references 
writes.   
 
When parallelizing loop codes, loop iterations are usually partitioned into tasks (through tiling). 
Outer loops are formed which iterate across the tasks (which are then expressed as codelets). 
Hence, each codelet code has several occurrences defined by the values of the iterators of 
the outer loops (which we’ll call “inter-task” loops).  
 
The naive dependence test between two codelet instances consists of computing the 
accessed data of each codelet as a function of the value of its inter-task loop indices, and get 
the values of the inter-task loop indices for both codelets for which the data sets accessed by 
both codelets intersect1.   
 
Unfortunately, this method relies on building a high-dimensional set of polyhedrons and 
projecting some of the dimensions out, leaving only the inter-task dimensions for both 
codelets. Projection is a highly combinatorial operation, and the computation time of a 
projection on a high-dimensional, complex polyhedron can easily make compilation time 
undesirably high. 
 
The computation of dependences (which are in fact dependence polyhedrons) can then easily 
become the bottleneck in automatic parallelization to a codelet-based programming model.  
We have addressed this issue through various techniques, which can be summed up as 
reducing the complexity of the dependence polyhedron and delegating some dependence 
computations to run-time.  These optimizations are as follows.  

Using loop types to define dependences 
As part of its representation of loops, R-Stream decorates loop dimensions with “types”, which 
summarize high-level properties of the dependences carried by the loops: 

● The “doall” type represents loops that don’t carry any dependences.  
● The “perm” type represents permutability with loops directly above or below (they are 

defined for a set of consecutive loop dimensions). This translates to dependence 
vectors lying in the non-negative orthant. 

● The “reduction” type represents loops whose iterations are associative. We have not 
focused on this type for this work.  

● The “seq” type represents loops that don’t have any of the previous properties. In an 
execution model based on loop parallelism (such as OpenMP), the consequence is 
that the iterations of such loops are executed sequentially.   

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 M. Baskaran, N. Vydyanathan, U. Bondhugula, J. Ramanujam, A. Rountev and P. Sadayappan, “Compiler-
assisted dynamic scheduling for effective parallelization of loop nests on multicore processors,” 
1 in proceedings of PPoPP 2009, pages 219-228. 



15 

When computing dependences, the “doall” and “perm” types can be used straightforwardly to 
generate conservative dependences without needing to compute a high-dimensional 
polyhedron: 

● There is no dependence between iterations of a doall loop. 
● Since they all lie in the non-negative orthant, dependences carried by perm loops can 

be conservatively approximated by the canonical unit basis vectors along the perm 
loop dimensions. 

  
R-Stream extracts fully permutable loops from a range of kernels including stencils and LU 
decomposition. A conservative set of dependences -- which often turns out to be exact -- can 
then be computed without projecting out high-dimensional polyhedrons.  
 
This technique was combined with the run-time dependence testing presented in the following 
section, by extending the poly-cnc framework, developed in the Traleika Glacier project, into a 
runtime-agnostic runtime wrapper that supports both CnC and SWARM.  

Conducting run-time dependence test 
Instead of having the R-Stream compiler generate explicit dependence polyhedrons that 
define which inter-task iterations of codelet B depend upon which inter-task iterations of 
codelet A, we can rely on knowing that loops are permutable to compute whether a “get” from 
or a “put” to a neighboring codelet instance is required by testing whether the neighbor’s 
iteration domain is non-empty.  
 
In the runtime-agnostic wrapper mentioned above, this is performed by generating a slight 
variant of the task’ loops (parameterized by the inter-task indices), which doesn’t execute the 
loop but tests whether neighboring loops defined by the canonical vectors of the positive 
orthant (as explained in the previous section)  contains at least one iteration.  
 
Preliminary results show that we can parallelize deeper stencils (as high as 3D+time+ two 
size parameters) within a desirable amount of compilation time using the combination of loop-
type-based dependences and run-time dependence testing. We plan to evaluate the separate 
effects of both techniques in Q4.  
 
Performance numbers relative to OpenMP are also encouraging, although mixed, as they go 
from 20X speedup to 50% slowdown, depending upon the kernel. Relevance of such a 
comparison is arguable since tile sizes that are good for bulk synchronous execution are not 
necessarily good for codelet-based execution, and conversely. Hence, we are expecting to 
learn from these results, run a less arguable comparison and present our findings in the next 
report. A report presenting the method in detail and the preliminary performance comparison 
results is available separately from this document.   

Convexification of dependences stemming from uniformly-generated 
references 
Groups of uniformly generated array references are characterized by access functions that 
only vary by a constant. For example, in the following loop nest, the three references to A are 
part of a uniformly generated reference group (UGR):  
 
for	
  (int	
  i=0;	
  i<	
  N;	
  i++)	
  { 



16 

	
  	
  	
  	
  for	
  (int	
  j=0;	
  j<M;	
  j++)	
  { 
	
  	
  	
  	
  	
  	
  	
  	
  A[f(i,j)+1][g(i,j)]	
  =	
  A[f(i,j)][g(i,j)-­‐1]; 
	
  	
  	
  	
  	
  	
  	
  	
  …	
  	
  =	
  A[f(i,j)-­‐3][g(i,j)]+B[i]	
  ; 
	
  	
  	
  	
  } 
} 

Computing the exact dataset of A accessed by the example loop nest boils down to 
computing the union of the image of the iteration domain {0 =< i <N; 0 =< j <M} through each 
of the three access functions to A.  
 
Unfortunately, the result is a non-convex set of three polyhedrons. Computing a dependence 
polyhedron using such an accessed dataset results in three times the number of projections 
as if there were only one convex dataset.  
 
Instead, we can compute a simple, convex slight over-approximation of the set of accessed 
data by a polyhedral “inflation” technique. The method, graphically illustrated in the figure 
below , produces a data set (called “inflated hull”) that is homomorphic to the iteration domain 
(which keeps its shape simple) and tightly includes the exact dataset accessed by the 
uniformly-generated reference group (the three references to A in our example).  
 

 
Convex, inflated  hull of three polyhedrons 

 
Using over-approximations entails the risk of producing dependences from (or to) non-
existent codelets. We avoid this risk by intersecting the over-approximated dependence 
polyhedrons with polyhedrons representing the set of actual source and destination codelets.  
 
The larger the number of references in a UGR, the bigger the savings in computing the 
dependence polyhedrons. For instance, if both the number of UGR references in the source 
and destination codelets is 3, computation of the (one convex) dependence polyhedron for 
these references is about one order of magnitude faster. 

Further work 
We are constantly working to further improve the computation of dependences. We plan to 
implement a technique presented here, which is expected to reduce the number of 
dependence polyhedrons by the number of inter-task dimensions, and to produce significantly 
better dependence-management code.  

Dependence convexification using runtime lexicographic test 
When computing dependence polyhedrons between codelets A and B, we are forming either 
a read-after-write (“true”), write-after-read (“anti”) or write-after-write (“output”) dependence 



17 

depending upon whether A reads the commonly accessed data before B. Hence, dependence 
polyhedrons are defined by the conjunction of “A shares data D with B” with either “A 
accesses D before B” or “B accesses D before A.”  Unfortunately, in the polyhedral model, 
relations of the type “A accesses D before B” are represented using non-convex sets of 
polyhedrons, which are intersected with the polyhedrons representing “A shares data D with B” 
to form the dependence polyhedrons.  
 
Our method is to postpone the evaluation of whether “A accesses D before B” or “B accesses 
D before A” to a runtime comparison of the inter-task indices of the considered A and B 
codelets. As a function of this, codelet A produces either (respectively) a “put” or a “get” 
towards B. As a result, R-Stream only needs to compute the much simpler polyhedron “A 
shares data D with B.” A function, which will unify the declaration of puts and gets, will be 
added to the R-Stream runtime layer for SWARM to support this.  


