
	
Dynamic	Analysis	for		

Program	Correctness	and	Op7miza7ons:	
Minimizing	Synchroniza7on	and	Floa7ng	

Point	Precision	

Koushik	Sen,	UC	Berkeley	&	LBNL	
James	Demmel,	UC	Berkeley	&	LBNL	

Cos7n	Iancu,	LBNL	
	

How	we	build	large	programs	today	
•  Scien&sts	depend	on	modularity	

–  Many	independently	wriLen	pieces	glued	together	
–  Mul7-language	(Fortran,	C++,	UPC,	…)	
–  Mul7-communica7on	layers	(OpenMP,	MPI,	GASnet,	…)	
–  Mul7-library	(BoxLib,	CombBLAS,	ScaLAPACK,	…)	
–  Heterogeneous	hardware	(CPU,	GPU,	…)	

•  Advantages	
–  Easier	to	understand	and	build	big	apps	from	smaller	components	
–  Code	reuse	is	efficient	

How	we	build	large	programs	today	
•  Scien&sts	depend	on	modularity	

–  Many	independently	wriLen	pieces	glued	together	
–  Mul7-language	(Fortran,	C++,	UPC,	…)	
–  Mul7-communica7on	layers	(OpenMP,	MPI,	GASnet,	…)	
–  Mul7-library	(BoxLib,	CombBLAS,	ScaLAPACK,	…)	
–  Heterogeneous	hardware	(CPU,	GPU,	…)	

•  Disadvantages	
–  Inaccuracies	from	fast	but	careless	data	sharing	(“race	condi7ons”)	

•  Different	answers	from	run	to	run	(“nonreproduciblity”)	
–  Inefficiencies	from	overly	conserva7ve	data	sharing	(too	many	“barriers”)	
–  Inaccuracies	from	using	too	liLle	floa7ng	point	precision	
–  Inefficiencies	from	using	high	precision	floa7ng	point	everywhere	

•  Goal	–	provide	tools	to	address	these	problems	
•  Common	approach:	“dynamic	analysis”		

–  Need	to	run	program,	gather	data,	learn	from	it,	modify	program	(repeat)	
–  Compilers	(“sta7c	analysis”)	not	enough	

Prac7cal	Examples	(so	far	...)	
•  Finding	bugs	

–  Scalable	data	race	detector	for	UPC	found	unknown	bugs	in	
established	codes		(SC’11,	ICS’13)	

–  Scaling	replay	of	one-sided	programs	(ICS'16)		
•  Performance	Op&miza&ons	for	NWChem	

–  Specula7ve	elision	of	barriers		(PPoPP’15),	incorporated	into	NWChem	
–  Energy	op7miza7ons	(Lavrijsen	et	al	2015)	
–  Conver7ng	blocking	reads/writes	to	non-blocking	ones	(Saillard	2016)	

•  Floa&ng	point	reproducibility	
–  ReproBLAS	(Demmel	et	al,	IEEE	Trans	Comp	2015)	

•  Floa&ng	point	precision	tuning	
–  Automa7cally	lowered	precision	while	maintaining	final	accuracy	in	

GSL,	NAS	(SC’13,	ICSE'16)	
•  Open	problems	...	

Part	I:	Race	Detec7on	and	
Op7miza7on	by	Safely	Removing	

Synchroniza7ons	

	

UPC	Data	Race	Detec7on			
Program	monitoring	and	code	genera7on	infrastructure	with	

low	run7me	overhead	
Data	race	=	two	tasks	access	same	memory	
loca7on	concurrently,	one	access	is	a	write	

	

1.  Scaling	Data	Race	Detec7on	for	Par77oned	Global	Address	Space	Programs.	Park	et	al.	ICS	
2013	

2.  Efficient	Data	Race	Detec7on	for	Distributed	Memory	Parallel	Programs.	Park	et	al.		SC	2011	

6	

Design	Requirements	

•  Efficiency	and	low	overhead	
•  Current	commercial	tools	10X-1000X		on	16	cores	

•  Complete	memory	coverage:	track	every	opera7on	
with	high	probability	

•  Precise:		report	only	the	“bugs”	(no	false	alarms)	
•  Reproducible:	iden7cal	behavior	across	execu7ons	
•  Scalable	in	program	size	(LoCs),	input	size,	
concurrency	

•  Automated	and	guided	detectors	

UPC-Thrille:	Data	Race	Detec7on	
Implementa7on	

•  For	each	load/store	or	communica7on	opera7on	
Examine	the	address	–>	instrumenta7on	overhead	
Record	the	address	–>	data	management	overhead	

•  For	each	synchroniza7on	opera7on	
–  Exchange	informa7on	about	all	L/S	and	comms	
–  Analyze	for	conflicts	

•  Instrumenta7on	overhead	is	reduced	by	
–  Hybrid	Sampling	(instruc7on	+	func7on	level	sampling)	
–  Further	pruning	using	program	analysis	

•  Data	management	overhead	is	reduced	with	beLer	data	structures	

•  Our	system:	<	50%	slowdown	up	to	2K	cores	on	20	
applica&ons	

–  Precise,	more	complete,	scalable,	reproducible	with	high	probability	

	
SReplay:	reproduce	nondeterminis7c	
bugs	using	a	small	set	of	threads		

	
	
	
	
	
	

	
	

1.  OPR:	Determinis7c	Group	Replay	for	One-Sided	Communica7on,	Qian	et	al.,	PPoPP	2016	(Poster)	
2.  SReplay:	Determinis7c	Sub-Group	Replay	for	One-Sided	Communica7on,	Qian	et	al.,	ICS	2016	
	

9	

Motivation

!X

UPC Runtime

T0 T1 T2
put get

……

value

• Assumption:
concurrency bugs
typically exist
among small set
of threads

UPC-Thrille:	Data	Race	Detec7on	
Implementa7on	

Two R&R Approaches

!X

……

• Order replay
• Log event order

• Small log size

• Same thread set in

record and replay

……
Val Val Val Val

• Data replay
• Record data input at

the right time

• Inject the values at

same points in replay

• Each thread could

replay in isolation

12	

SReplay: A hybrid approach

!X

……

value

Val
Val Val

• Record: in
replay group
• Value inputs

• Event order

• Replay
• Data replay

• Enforce event

order

• Infer

communication

replay group

Result Highlights

!X

• Used 15 UPC benchmarks to evaluate SReplay.

• 8 NAS Parallel Benchmarks: BT, CG, EP, FT, IS, LU, MG, SP

• 3 applications in the UPC test suite: guppie, laplace, cop

• 2 applications in the UPC Task Library: fib, queens

• Unbalance Tree Search (UTS)

• Parallel De Bruijn Graph Construction and Traversal for De Novo Genome

Assembly (Meraculous).

• 1.09x ~ 27.5x record overhead when recording 2 threads in 1024 threads

• Overhead does not increase significantly with the replay group size

• Low false positive/negative rates in event order detection

	

	

	Safely	Removing	Barriers	in	NWChem	
	

Using	Data	Race	Detec7on	for	Performance	Op7miza7ons	
	

	
	
	
	
	
	

1.  Barrier	Elision	for	Produc7on	Parallel	Programs.	Chabbi,	Mellor-Crummey		et	al.	PPoPP	2015	

14	

Barriers	in	NWChem	
	

Example	Run7me	Overhead:	15%	in	QM-CC,	22%	in	QM-DFT	

15	

!
next = nxtask(-nproc, 1)
!

NO GA OPS
!
!
!
!
call ga_copy(g_b, g_a)
!
!
!
!
!
call ga_destroy(g_b)
!
!
!
!
call ga_sync()

Barrier() in entry to pnga_destroy()

Barrier() in entry to ga_copy()

Barrier() in exit from ga_copy()

Programmer puts another Barrier()

symmetry/sym_sym.F

Barrier() in exit from to pnga_destroy()

Barrier() in comex_free()

Barrier() in entry to pnga_destroy()

Barrier() in exit from to pnga_destroy()

Barrier() in comex_free()

Nine Barriers ?

Do	we	need	9	
barriers	across	3	

modules		
(ga_,comex_,	pnga_)	

???	

Performance	Improvements	

•  Low	overhead	of	instrumenta7on	<	1%	(most	7mes)	
•  Offline	analysis	deletes	63%	barriers,	even	higher	speedup	
•  Feedback	from	analysis	incorporated	in	NWChem	(delete	

clearly	redundant	barriers)	

16	

Cores	 Time	(s)	 Context	 Total/skipped	 Speedup	

DCO-512	 731	 7959	 138072/	42%	 0.3%	(0.7%)	

DCO-1024	 1084	 7959	 138072/42%	 0.2%	(7.6%)	

DCO-2048	 1362	 7959	 138072/42%	 13.3%(13.9%)	

OCT-512	 570	 4702	 72188/	45%	 1.7%	(3.4%)	

OCT-1024	 586	 4702	 72188	/	45%	 4.4%	(6.6%)	

OCT-2048	 624	 4702	 72188/45%	 6.5%	(6.0%)	

Part	II:	Precision	Tuning	and	
Reproducibility	of	Floa7ng-Point	

Programs	

	
Precimonious:	Automa7c	Tuning	of	

Floa7ng	Point	Precision	
	
	

PRECIMONIOUS is open source, and can be found at
https://github.com/corvette-berkeley/precimonious	

	
	
	

1.  Precimonius:	Tuning	Assistant	for	Floa7ng-Point	Precision.	Rubio-Gonzalez	et	al.,	SC'16	
2.  Floa7ng-Point	Precision	Tuning	Using	Blame	Analysis.	Rubio-Gonzalez	et	al.,	ICSE'16	
	

18	

Mo7va7on	and	Approach	
•  Conserva7ve	approach:	use	double	precision	everywhere	

–  Pro:	Usually	most	reliable,	least	effort	required	
–  Con:	Uses	more	7me,	memory,	energy	than	may	be	necessary	

•  Goal:	Use	as	liLle	precision	as	needed	for	any	opera7on	or	
variable,	to	get	an	“acceptable”	final	answer	
–  Pro:	Save	7me,	memory,	energy	
–  Con:	If	done	by	hand,	may	require	extensive	numerical	analysis,	code	

rewri7ng,	etc.	(or	if	not	done	carefully,	unexpected	loss	of	accuracy)	

•  Automate	analysis,	using	Precimonious	
–  	Short	for	“Parsimonious	with	Precision”	
–  	Uses	“delta	debugging”,	or	bisec7on	on	code	

19	

TYPE
CONFIGURATION

PRECIMONIOUS!

TEST
INPUTS

SOURCE
CODE

MODIFIED
PROGRAM

Dynamic Program Analysis for Floating-Point Precision Tuning!

Annotated with
Error Threshold!

Less Precision!

Speedup!

PRECIMONIOUS [SC’13]!
“Parsimonious with Precision”!

Dynamic	analysis:	
		Run	program	
		Gather	data	
		Learn	from	it	
		Modify	program	
		Repeat	

Program! L! D! F! Calls!
bessel! 0! 18! 0! 0!
gaussian! 0! 52! 0! 0!
roots! 0! 19! 0! 0!
polyroots! 0! 28! 0! 0!
rootnewt! 0! 12! 0! 0!
sum! 0! 31! 0! 0!
fft! 0! 22! 0! 0!
blas! 0! 17! 0! 0!
EP! 0! 13! 0! 4!
CG! 0! 32! 0! 3!
arclength! 9! 0! 0! 3!
simpsons! 9! 0! 0! 2!

L! D! F! Calls! # Config! mm:ss!
0! 18! 0! 0! 130! 37:11!
0! 52! 0! 0! 201! 16:12!
0! 0! 19! 0! 3! 1:03!
0! 28! 0! 0! 336! 43:17!
0! 4! 8! 0! 61! 16:56!
0! 9! 22! 0! 325! 28:14!
0! 0! 22! 0! 3! 1:16!
0! 0! 17! 0! 3! 1:06!
0! 5! 8! 4! 111! 23:53!
0! 2! 30! 3! 44! 0:57!
0! 2! 7! 3! 33! 0:40!
0! 0! 9! 2! 4! 0:07!

GSL!

NAS!

Original Type Configuration! Proposed Type Configuration!
Error threshold: 10-4!

Experimental Results!

0!
5!

10!
15!
20!
25!
30!
35!
40!

Sp
ee

du
p

%
!

Maximum speedup observed across all error thresholds: 41.7%!

Speedup for Error Threshold 10-4!

	White-Box	Approach:	Blame	Precision	
Analysis	using	Shadow	Execu7on	[ICSE'16]	
Ø  Scalability limitation of

Precimonious!

q  Too many runs for large
programs!

q  E.g., 52 FP variables → 1,435
configurations!

Ø  Goal: apply white-box
approach to over-
approximate set of variables
that require higher precision
(to be “blamed”)!

INTERPRETER

ANALYSIS

BPA
Results!

Instrumented
Code!

	

INSTRUMENTATION

Original!
Program!

Results:	Blame	Precision	Analysis	
•  Shadow execution performs FP operations in higher precision!

–  Shadow object associated with each variable in the program!
–  Shadow information includes value in different precisions!

•  Perform Blame Precision Analysis (BPA)!
•  Collect a dynamic trace with shadow information!
•  Construct a blame tree!

–  Variables and operators that require higher precision given a precision requirement
on the result!

•  Implemented using our general shadow execution framework for
LLVM IR!

•  Combination of Blame Analysis with Precimonious!
–  the	op7mized	programs	execute	faster	(in	three	cases,	we	observe	as	high	as	39.9%	

program	speedup)	and		
–  the	combined	analysis	7me	is	9×	faster	on	average,	and		
–  up	to	38×	faster	than	Precimonious	alone.		

Reproducible		
Floa7ng	Point	Computa7on	

	
	
	
	

1.  Jim	Demmel,	Hong	Diep	Nguyen,	Peter	Ahrens	

Mo7va7on	(1/2)	

•  Since	roundoff	makes	floa7ng	point	addi7on	
nonassocia7ve,	different	orders	of	summa7on	
oxen	give	different	answers	

•  On	a	parallel	machine,	the	order	of	summa7on	
can	vary	from	run	to	run,	or	even	subrou7ne-call	
to	subrou7ne-call,	depending	on	scheduling	of	
available	resources,	so	answers	can	change	

•  Why	is	this	important?	

Mo7va7on	(2/2)	
•  NA-Digest:	Commercial	FEM	SW	vendor	wanted	a	parallel	reproducible		sparse	linear	

equa7on	solver,	because	his	customers	(civil	engineers)	had	contractual	obliga7ons	to	
their	customers	to	get	the	same	answer	from	run	to	run:	“Will	the	bridge	fall	down	or	
not?”	

•  Responses	from	~100	UC	Berkeley	faculty	to	email	query	about	the	importance	of	
reproducibility:	

–  Most	common:	How	will	I	debug	without	reproducibility?	
–  How	do	I	do	fracture	mechanics,	where	I	do	many	random	simula7ons	looking	for	a	very	rare	

event,	and	when	one	occurs,	I	need	to	resimulate	it	exactly,	while	compu7ng	some	side	
informa7on?	

–  What	if	my	“illegal	underground	nuclear	test	detector”	(funded	by	the	United	Na7ons)	says	
“They	did	it!”	and	then	“They	didn’t	do	it”?	

•  Many	workshops	at	recent	Supercompu7ng	conferences	
–  Users,	researchers,	vendors	(gcl.cis.udel.edu/sc15bof.php)	

•  Intel	MKL	with	CNR	(Condi7onal	Numerical	Reproducibility)	
–  If	user	promises	to	use	same	number	of	cores,	mul7core	code	will	perform	opera7ons	in	

same	order	(with	performance	hit)	

•  Reproducible	summa7on	used	in	CCSM	climate	model	(Pat	Worley)	for	verifica7on	
during	development	and	reproducibility	during	produc7on	

Reproducible	BLAS	
•  First	step	in	longer	term	goal	of	making	Sca/LAPACK,		other	

libraries/frameworks	reproducible	and	s7ll	high	performance	
•  Simplest	algorithm	for	reproducible	sum	s	=	Σi	x(i)	

1.  Compute	M	=	maxi	|x(i)|;	exact	and	so	reproducible	
2.  Round	all	x(i)	to	1	ulp	(unit	in	last	place)	of	M;	error	introduced	no	worse	

than	usual	error	bound	
3.	 	Add	rounded	x(i);	they	behave	like	fixed	point	numbers				

	so	summa7on	exact	and	so	reproducible	

•  Drawback:	costs	2	or	3	passes	over	data	sequen7ally,	or																						
3	reduc7on/broadcast	steps	in	parallel	

•  BeLer:	can	do	it	in	1	pass,	or	1	reduc7on,	by	interleaving	all	3	
steps	

•  Industrial	interest	in	hardware	support	

 0

 1

 2

 3

 4

 5

da
su

m
A

lg
o

3
A

lg
o

2
A

lg
o

6

da
su

m
A

lg
o

3
A

lg
o

2
A

lg
o

6

da
su

m
A

lg
o

3
A

lg
o

2
A

lg
o

6

da
su

m
A

lg
o

3
A

lg
o

2
A

lg
o

6

da
su

m
A

lg
o

3
A

lg
o

2
A

lg
o

6

da
su

m
A

lg
o

3
A

lg
o

2
A

lg
o

6

da
su

m
A

lg
o

3
A

lg
o

2
A

lg
o

6

da
su

m
A

lg
o

3
A

lg
o

2
A

lg
o

6

da
su

m
A

lg
o

3
A

lg
o

2
A

lg
o

6

da
su

m
A

lg
o

3
A

lg
o

2
A

lg
o

6

da
su

m
A

lg
o

3
A

lg
o

2
A

lg
o

6

1 2 4 8 16 32 64 128 256 512 1024

T
im

e
(n

or
m

al
iz

ed
 b

y
da

su
m

 ti
m

e)

Processors

local sum
Absolute Max
communication
All-Reduce

3.
1

3.
2

3.
1

2.
9

2.
8

3.
1

3.
0

2.
9

2.
3 2.

4

2.
2

4.
7

4.
7

4.
4

4.
1

3.
9

3.
7

3.
6

3.
1

2.
3

2.
3

2.
2

4.
9

5.
0

4.
6

4.
3

3.
9

3.
4

3.
0

2.
2

1.
4

1.
2

1.
2

29	

Performance	results	on	1024	proc	Cray	XC30	
•  1.2x	to	3.2x	slowdown	vs	fastest	(nonreproducible)	code	dasum		
•  Data	for	n=1M	summands	on	up	to	p=1024	processors		
•  3	reproducible	sum	algorithms	compared,	best	one	depends	on	n,	p			
•  Code	and	papers	at	bebop.cs.berkeley.edu/reproblas				

Future	Work	
•  Correctness	analysis	and	performance	op7miza7ons	using	

sta7c	analysis	has	its	limita7ons	
•  Dynamic	program	analysis	is	a	must	

–  Instrument,	run,	gather	data,	analyze	and	report,	learn	from	data,	
modify	code	on	the	fly	(JIT???)	

–  In	this	project,	we	ended	up	implemen7ng	similar	instrumenta7on	
framework	over	and	over	again	

–  Tedious	and	error-prone	
•  We	want	to	build	a	general,	declara7ve,	easy-to-use	

instrumenta7on,	dynamic	analysis,	and	code	modifica7on	
framework	for	an	IR	(e.g.	LLVM)	
–  possibly	use	it	to	support	DSLs		

Future	Work	
•  Customizable	Instrumenta7on	and	Code	Transforma7on	

Framework	(for	LLVM	and	other	IRs)	
–  to	detect	and	fix	non-determinism	and	performance	problems		

•  Configurable	Instrumenta7on	and	Log	Collec7on	Framework	at	IR	Level	
–  Turn	on	and	off	instrumenta7on	automa7cally	or	manually	
–  Target	LLVM	

•  Analyze	collected	logs		
–  Infer	bugs	
–  Infer	performance	problems	

•  Recommend	Dynamic	Code	Transforma7on	at	LLVM	level	
–  suggest	addi7on	or	removal	of	instrumenta7on	
–  suggest	fix	for	non-determinis7c	bugs	
–  suggest	removal	of	synchroniza7on	and	high-precision	
–  suggest	code	transforma7on	to	replace	blocking	opera7ons	with	non-blocking	opera7ons	

•  Apply	fixes	
–  axer	approval	from	user	

Instrumenta7on	and	Code	
Transforma7on	(for	LLVM)	

•  STrex	(coming	soon	...)	
–  an	extension	of	regular	expressions	
–  works	on	tree-structured	data	(e.g.	ASTs)	
–  piggy-back	on	exis7ng	parser	
–  liLle	programming	

•  Conveniently	specify	
–  instrumenta7on	rules	(to	collect	data)	
–  code	rewri7ng	rules	(to	fix	bugs	and	performance	problems)	

•  JIT	

–  query	paLerns	over	ASTs	(to	find	common	bugs)	
–  transforma7on	rules	(DSL	compiler)	

•  Implementa7on	for	C++	and	C	and	other	languages	
•  Work	with	applica7on	developers	

–  and	widely-used	HPC	applica7ons	(e.g.	NWChem)	

Future	Work	
•  Complete	implementa7on	of	sequen7al	ReproBLAS	
•  Extend	to	PBLAS,	other	pla�orms,	with	autotuning	
•  Go	up	stack:	Reproducible	LAPACK,	ScaLAPACK,	
many	other	libraries	(depends	on	user	demand)	

•  Collaborate	with	vendors	on	soxware	and	
hardware	implementa7ons				

•  Under	discussion	with	IEEE	754	Floa7ng	Point	
Standard	and	BLAS	Standard	CommiLees	

•  Use	race	detec7on	tool	to	iden7fy	other	sources	of	
nonreproducibility,	automate	fixing	them	

33	

