
Research Products, “Exploiting Global View for Resilience”∗

Andrew A. Chien, University of Chicago and Argonne National Laboratory
Pavan Balaji, Argonne National Laboratory

May 2015

1 Executive Summary

GVR research products include software releases, large-scale application demonstrations (and re-
sulting modified application code versions), and a number of new research insights as documented
in highly-refereed research publications and technical reports. Notably, the technical reports pro-
vide thorough documentation of both the GVR software itself, but also how it can be applied to
large-scale applications, making the GVR research results, embodied and usable in the software
release, accessible to mainstream HPC applications scientists and developers.

Global View Resilience (GVR), is a library the uses versioned distributed arrays to enable
computational scientists to build portable, resilient applications. Beyond process/node crashes,
GVR also enables resilience to more difficult latent or silent errors. Through application-controlled
error checking and recovery.

Key novel features of GVR include:

• Multi-version distributed arrays that enable complex and latent error recovery.

• Multi-stream versioning that gives the programmer control of when versions are created for
an array.

• Unified error signaling and handling, customized per GVR distributed array, that enable
algorithm-based fault-tolerance (ABFT) error-checking and recovery.

We have applied the GVR approach to several large applications (PCG solver, OpenMC, ddc-
MD, and Chombo). Based on this experience, we evaluate the programmer effort required (code
changes) to adopt version-based resilience and its performance impact.

Our results show that:

• The design and implementations of the GVR version-based resilience model, including the
API for multi-stream, versioned distributed arrays and flexible cross-layer error signaling
and recovery enable flexible application resilience. This effort has culminated in an open
source release in October 2014 that runs efficiently and scales well on a variety of Cray,
IBM, and vanilla Linux systems. Extreme performance scaling experiments with GVR and

∗Funded by Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy,
under Award DE-SC0008603 and Contract DE-AC02-06CH11357.

1



OpenMC that show excellent to 16,384 nodes, and in many other applications, experiments
demonstrating over 8,192 nodes. These studies show that the GVR API can be
efficiently implemented in highly-scalable applications and run on multiple HPC
hardware platforms.

• Extensive, deep study of GVR with application proxies and large applications (PCG/Trilinos,
OpenMC, ddcMD, and Chombo) show that only modest code changes (<2% LOC) are re-
quired in order to achieve application-controlled, portable, version-based resilience. These
studies show that resilience can be added to scalable, highly-tuned HPC ap-
plications in a portable fashion using GVR. Because resilience is a moderate concern
today, but expected to be a critical concern at exascale, GVR provides and all-important
“gentle slope” approach.

• Application experiments that demonstrate varied approaches to application-level resilience
by using a version-based distributed array model. These include recovery from immediately
detected errors, latent or silent errors (where detection is delayed), and forward-error recovery
techniques. The latter two particularly benefit from GVR’s multi-version and multi-stream
capability that enables a broad range of novel recovery techniques. These GVR demon-
strations show that application-based error checking and correction (ABFT) can
be expressed and exploited using GVR, and the resulting applications can scale
well.

• Performance studies across the same applications documenting that the cost of running with
versioning code generally results in <2% runtime overhead, at versioning frequencies much
higher than needed for today’s error rates. These GVR results show forward-looking
application teams can begin adding GVR to their codes today with low over-
head to match existing reliable NERSC, ALCF, OLCF machine. Further, these
modified codes can be used to tap lower-reliabilty platforms for more science.

In short, our results show that GVR’s version-based resilience using distributed arrays is a
portable, gentle-slope resilience approach that handles both immediate and latent errors. It enables
flexible error reporting and recovery and thus is promising for scaling to the higher error rates
expected in extreme-scale hardware. These results are documented in great detail in our papers
detailed in the bibliography below; with the relevant publications listed for each topic (note that
several address multiple topics and thus are listed several times).

Efficient Versioning and Exploitation of NVRAM

1. Hajime Fujita, Kamil Iskra, Pavan Balaji, and Andrew A. Chien, “Empirical Characterization
of Versioning Architectures”, to appear in IEEE Cluster, September 2015, Chicago. (compares
hardware-assisted and software-only versioning)

2. A. Chien, P. Balaji, N. Dun, A. Fang, H. Fujita, K. Iskra, Z. Rubenstein, Z. Zheng, J.
Hammond, I. Laguna, D. Richards, A. Dubey, B. van Straalen, M Hoemmen, M. Heroux, K.
Teranishi, A. Siegel. Exploring Versioning for Resilience in Scientific Applications: Global-
view Resilience, submitted for publication, March 2015. (Best overall project summary, GVR
programming approach, programmer effort, basic versioning performance)

2



3. Aiman Fang and Andrew A. Chien, “How Much SSD Is Useful for Resilience in Supercom-
puters, in IEEE Symposium on Fault-tolerance at Extreme-Scale (FTXS), June 2015. (use
of NVRAM for resilience)

4. Aiman Fang, “How Much SSD Is Useful for Resilience in Supercomputers, Master’s Thesis,
Department of Computer Science, University of Chicago, April 2015. (use of NVRAM for
resilience)

5. A. Chien, P. Balaji, P. Beckman, N. Dun, A. Fang, H. Fujita, K. Iskra, Z. Rubenstein, Z.
Zheng, R. Schreiber, J. Hammond, J. Dinan, A. Laguna, D. Richards, A. Dubey, B. van
Straalen, M Hoemmen, M. Heroux, K. Teranishi, A. Siegel, and J. Tramm, “Versioned Dis-
tributed Arrays for Resilience in Scientific Applications: Global View Resilience”, in Interna-
tional Conference on Computational Science (ICCS 2015), Reykjavik, Iceland, June 2015.

6. Hajime Fujita, Nan Dun, Zachary Rubenstein, and Andrew A. Chien. Log-Structured Global
Array for Efficient Multi-Version Snapshots, IEEE CCGrid 2015, May 2015. (flat and log-
structured versioning approaches)

7. Hajime Fujita, Nan Dun, Zachary Rubenstein, and Andrew A. Chien. Log-Structured Global
Array for Efficient Multi-Version Snapshots, UChicago CS Tech Report 2014-16, Nov 2014.
(similar to above, more extensive results)

8. Guoming Lu, Ziming Zheng, and Andrew A. Chien, When are Multiple Checkpoints Needed?,
in 3rd Workshop for Fault-tolerance at Extreme Scale (FTXS), at IEEE Conference on High
Performance Distributed Computing, June 2013, New York, New York. (silent/latent errors,
need for versioning approach)

9. Hajime Fujita, Robert Schreiber, Andrew A. Chien, It’s Time for New Programming Models
for Unreliable Hardware, to appear in ASPLOS 2013 Provocative Ideas session, March 18,
2013. (silent/latent errors, need for versioning approach)

10. Wesley Bland, Aurelien Bouteiller, Thomas Herault, Joshua Hursey, George Bosilca, and
JackJ. Dongarra. An evaluation of User-Level Failure Mitigation support in MPI. Computing,
95(12):11711184, 2013. (user-level MPI recovery)

Application and API Studies

1. A. Chien, P. Balaji, N. Dun, A. Fang, H. Fujita, K. Iskra, Z. Rubenstein, Z. Zheng, J.
Hammond, I. Laguna, D. Richards, A. Dubey, B. van Straalen, M Hoemmen, M. Heroux, K.
Teranishi, A. Siegel. Exploring Versioning for Resilience in Scientific Applications: Global-
view Resilience, submitted for publication, March 2015. (Best overall project summary, GVR
programming approach, programmer effort, basic versioning performance)

2. A. Chien, P. Balaji, P. Beckman, N. Dun, A. Fang, H. Fujita, K. Iskra, Z. Rubenstein, Z.
Zheng, R. Schreiber, J. Hammond, J. Dinan, A. Laguna, D. Richards, A. Dubey, B. van
Straalen, M Hoemmen, M. Heroux, K. Teranishi, A. Siegel, and J. Tramm, “Versioned Dis-
tributed Arrays for Resilience in Scientific Applications: Global View Resilience”, in Interna-
tional Conference on Computational Science (ICCS 2015), Reykjavik, Iceland, June 2015.

3



3. The GVR Team, Global View Resilience (GVR) Documentation, Release 1.0, University of
Chicago, Computer Science Technical Report 2014-10. (The API reference)

4. Nan Dun, Hajime Fujita, John R. Tramm, Andrew A. Chien, Andrew R. Siegel, Data De-
composition in Monte Carlo Neutron Transport Simulations using Global View Arrays, In-
ternational Journal of High Performance Computing Applications, March 2015. (OpenMC
study, scaling to 16K ranks, forward recovery)

5. Nan Dun, Hajime Fujita, John Tramm, Andrew A. Chien, and Andrew R. Siegel. Data
Decomposition in Monte Carlo Particle Transport Simulations using Global View Arrays,
UChicago CS Tech Report 2014-09 May 2014. (similar to above, more extensive results)

6. Hajime Fujita, Nan Dun, Aiman Fang, Zachary A. Rubenstein, Ziming Zheng, Kamil Iskra,
Jeff Hammond, Anshu Dubey, Pavan Balaji, Andrew A. Chien: Using Global View Resilience
(GVR) to add Resilience to Exascale Applications, SC14, Nov 2014 (Best Poster Finalist)

7. Aiman Fang and Andrew A. Chien, “Applying GVR to Molecular Dynamics: Enabling Re-
silience for Scientific Computations”, Tech Report, University of Chicago, Dept of Computer
Science, CS-TR-2014-04, April 2014. (detailed GVR study with ddcMD)

8. Ziming Zheng, Andrew A. Chien, Keita Teranishi, “Fault Tolerance in an Inner-Outer Solver:
a GVR-enabled Case Study”, in Proceedings of VECPAR 2014, July 2014, Eugene, Oregon.
Proceedings available from Springer-Verlag Lecture Notes in Computer Science. (detailed
GVR study with Trilinos and GMRES)

Algorithm-based Fault Tolerance Using GVR

1. Nan Dun, Hajime Fujita, John R. Tramm, Andrew A. Chien, Andrew R. Siegel, Data De-
composition in Monte Carlo Neutron Transport Simulations using Global View Arrays, In-
ternational Journal of High Performance Computing Applications, March 2015. (OpenMC
study, scaling to 16K ranks, forward recovery)

2. Ziming Zheng, Zachary Rubenstein, and Andrew A. Chien, GVR-Enabled Trilinos: An
Outside-In Approach for Resilient Computing, in the SIAM Conference on Parallel Process-
ing, February 2014, Portland Oregon. (detailed GVR study with Trilinos and GMRES)

3. Ziming Zheng, Andrew A. Chien, Keita Teranishi, “Fault Tolerance in an Inner-Outer Solver:
a GVR-enabled Case Study”, in Proceedings of VECPAR 2014, July 2014, Eugene, Oregon.
Proceedings available from Springer-Verlag Lecture Notes in Computer Science. (detailed
GVR study with Trilinos and GMRES)

4. Ziming Zheng, Andrew A. Chien, Mark Hoemmen, Keita Teranishi, “Fault Tolerance in an
Inner-Outer Solver: a GVR-enabled Case Study”, available as Technical Report from Univer-
sity of Chicago Department of Computer Science, CS-TR-2014-01, January 2014. (similar to
above, more extensive results)

5. Z. Rubenstein, “Error Checking and Snapshot-based Recovery in Preconditioned Conjugate
Gradient Solver”, Masters Thesis, University of Chicago, Department of Computer Science,
March 2014. (error injection study for PCG/Trilinos)

4



6. Z. Rubenstein, J. Dinan, H. Fujita, Z. Zheng, A. Chien, “Error Checking and Snapshot-Based
Recovery in a Preconditioned Conjugate Gradient Solver”, University of Chicago, Department
of Computer Science Technical Report 2013-11, December 2013. (extensive study of error
injection study for PCG/Trilinos)

2 GVR Software Releases

The GVR software, Version 1.0.0 was released under BSD licensing on October 4, 2014. Prior
to that, pre-release versions were shared with applications teams (Trilinos, ddcMD, OpenMC,
Chombo, etc.). Most recently, we have made GVR Version 1.0.1 available, and this version is also
in deployment at NERSC to make it generally available to the DOE community.

2.1 GVR Software Release - Primary

GVR (Global View Resilience) is a user-level library that enables portable, efficient, application-
controlled resilience. The primary target of GVR is HPC applications that require both extreme
scalability and performance as well as resilience. GVR’s key approaches include independent ver-
sioning of application arrays, efficient partial or whole restoration, open resilience to maximize the
number of errors that can be handled (minimize fail-stop occurrences). Application knowledge can
be exploited to control overhead, maximize error coverage, and maximize recoverable errors.

The GVR Version 1.0.x includes with following features, and runs on IBM, Cray, and
general Linux platforms.

• Portable application-controlled resilience and recovery with incremental code change

• Versioned distributed arrays with global naming (a portable abstraction)

• Reliable storage of the versioned arrays in memory, local disk/SSD, or global file system

• Whole version navigation and efficient restoration

• Partial version efficient restoration (incremental “materialization”)

• Independent array versioning (each at its own pace)

• Open Resilience framework to maximize cross-layer error handling

• application-defined error handling

• unified application and system error descriptors

• attribute based composition for easy extensibility at application, operating system, and hard-
ware levels

• C native APIs and Fortran bindings

Current release requires only:

• an MPI library which is compatible with MPI-3 standard.

5



• Standard “autotools” preparation

• Requires no root privilege

• Runs on several platforms including x86-64 Linux cluster, Cray XC30 and IBM Blue Gene/Q

User documentation is available as “Global View Resilience (GVR) Documentation, Release
1.0”, University of Chicago, Computer Science Technical Report 2014-10. The GVR team gratefully
acknowledges the incorporation of elements of the Scalable Checkpoint-restart (SCR) system into
the GVR system. The GVR source release also includes two subcomponents – not required for
GVR use, but useful with it – LRDS and MPI with ULFM.

Local Reliable Data Store - LRDS An important element of the GVR project research is the
Local Reliable data store that implements a variety of efficient change tracking and version creation
mechanisms. The LRDS software was released as part of the GVR system release, and exploits a
wide range of different hardware support situations, including:

• hardware TLB “dirty-bit” tracking

• virtual memory, page-protection based tracking

• classic, incremental checkpointing

• novel, decremental checkpointing

These approaches are documented in “Empirical Characterization of Versioning Architectures”,
to appear in IEEE Cluster, September 2015.

MPI with User-level Fault Mitigation - ULFM Several GVR application experiments (par-
ticularly those with Chombo), included recovery at the MPI-level, using the ULFM system. The
corresponding ULFM software was also released as part of the GVR software release.

2.2 GVR System Documentation

• The GVR Team, Global View Resilience, API Documentation R0.8.1-rc0, University of
Chicago, Computer Science Technical Report 2014-05.

• The GVR Team, How Applications Use GVR: Use Cases, University of Chicago, Computer
Science Technical Report 2014-06.

3 GVR Team Acknowledgements

GVR Team Members include: Hajime Fujita, Zachary Rubenstein, Aiman Fang, Nan Dun, Yan
Liu (UChicago), Pavan Balaji, Pete Beckman, Kamil Iskra, (ANL), and application partners An-
drew Siegel (Argonne/CESAR), Ziming Zheng (UC/Vertica), James Dinan (Intel), Guoming Lu
(UESTC), Robert Schreiber (HP), Jeff Hammond (Argonne/ALCF/NWChem-¿Intel), Mike Her-
oux, Mark Hoemmen, Keita Teranishi (Sandia), Dave Richards (LLNL), Anshu Dubey, Brian Van
Straalen (LBNL)

6



We gratefully acknowledge the Scalable Checkpoint-restart team (SCR Team) at Livermore as
we have incorporated some elements fo their SCR software in the GVR system.

This work was supported by the US Department of Energy, Office of Science, Advanced Scientific
Computing Research DE-SC0008603 and DE-AC02-06CH11357.

7


