
Evolving MPI to Address the Challenges of Exascale Systems

Rajeev Thakur (PI), Pavan Balaji, Jim Dinan, Dave Goodell, Rusty Lusk, Marc Snir
Mathematics and Computer Science Division, Argonne National Laboratory

{thakur, balaji, dinan, goodell, lusk, snir} @mcs.anl.gov

http://www.mpich.org
http://collab.mcs.anl.gov/display/mpiexascale

Project Goals

The vast majority of DOE’s parallel scientific applications running on the largest HPC systems are written in
a distributed-memory style using MPI as the standard interface for communication between processes. These
application codes represent billions of dollars worth of investment. As we transition from today’s petascale
systems to exascale systems by the end of this decade, it is not clear what will be the right programming
model for the future. However, until a viable alternative to MPI is available, and large DOE application codes
have been ported to the new model, MPI must evolve to run as efficiently as possible on future systems. This
situation requires that both the MPI standard and MPI implementations address the challenges posed by the
architectural features, limitations, and constraints expected in future post-petascale and exascale systems.

The most critical issue is likely to be interoperability with intranode programming models with a high
thread count. This requirement has implications both for the definition of the MPI standard itself (being
considered now in the MPI Forum, in which we are major participants) and for MPI implementations. Other
important issues, also impacting both the standard and its implementation, include scalability, performance,
enhanced functionality based on application experience, and topics that become more significant as we move
to the next generation of HPC architectures: memory utilization, power consumption, and resilience.

Our group at Argonne has been a leader in MPI from the beginning, including the MPI standardization
effort; research into implementing MPI efficiently that has resulted in a large number of publications; and de-
velopment of a high-performance, production-quality MPI implementation (MPICH) that has been adopted
by leading vendors (IBM, Cray, Intel, Microsoft, Myricom) and runs on most of the largest machines in the
world. This project continues the ongoing MPI-related research and development work at Argonne, with
the overall goal of enabling MPI to run effectively at exascale. Specific goals of this project fall into three
categories:

1. Continued enhancement of the MPI standard through the MPI Forum by leading several of its subcom-
mittees to ensure that the standard evolves to meet the needs of future systems and also of applications,
libraries, and higher-level languages.

2. Continued enhancement of the MPICH implementation of MPI to support the new features in future ver-
sions of the MPI standard (MPI-3 and beyond) and to address the specific challenges posed by exascale
architectures, such as lower memory per core, higher thread concurrency, lower power consumption,
scalability, and resilience.

3. Investigation of new programming approaches to be potentially included in future versions of the MPI
standard, including generalized user-defined callbacks, lightweight tasking, and extensions for heteroge-
neous computing systems and accelerators.

We have close ties with various DOE applications that are targeted to scale to exascale, including the
exascale codesign centers. We will work with these applications, particularly the mini-apps and skeleton
codes from the codesign centers, to study the effectiveness of our MPI implementation and of the new
features in the MPI standard. We will also continue our collaboration with vendors, particularly IBM,
Cray, and Intel, to codesign MPICH such that it remains the leading implementation running on the fastest
machines in the world.

http://www.mpich.org
http://collab.mcs.anl.gov/display/mpiexascale


Recent Accomplishments

MPI-3 Standard and Implementation The MPI-3 Standard was released in September 2012, and we have
been actively involved in its definition for the past three years. MPI-3 adds several new features to the
MPI specification including significant extensions to the one-sided communication interface, nonblocking
versions of all collective communication functions, neighborhood collectives, an interface for tools to access
information internal to an MPI implementation, and bindings for Fortran 2008. Other major features, such
as fault tolerance and improved support for hybrid programming, were not ready in time for inclusion in
MPI-3 but are actively being discussed for inclusion in a future version of MPI.

The MPICH implementation has closely tracked the evolution of the MPI standard for a long time, and
our goal was to be the first implementation to support MPI-3. We successfully developed and released at
SC12 a major new version of MPICH (3.0) that supports all of MPI-3. (Although the implementation is
functionally complete, performance tuning of many parts remains, which we continually work on.)

Figure 1: Application success stories: Genome
assembly and Cyclops Tensor Framework
(chemistry)

Collaboration with Vendors We continue to collabo-
rate with our vendor partners to ensure that they have a
running start toward supporting a full MPI-3 implemen-
tation on their platforms. IBM has decided to merge its
two separate MPI implementation efforts for the Blue
Gene and POWER platforms into a single implementa-
tion based on MPICH. We have been working with them
closely and share a common code base. We similarly
work closely with Cray on MPI for the Cray systems and
with Intel on MPI for Intel platforms. As a result, the
majority of the largest machines in the Top500 list run
MPICH. For example, seven of the top ten machines in
the November 2012 Top500 list use MPICH. We are also
working with Fujitsu and the University of Tokyo to port
MPICH to the K computer.

Active Messages in MPI MPI does not directly sup-
port active messages; nonetheless, they are useful for
implementing higher-level programming models, such as
PGAS and Charm++. Together with Xin Zhao and Bill
Gropp at UIUC, we investigated approaches for support-
ing active messages within the context of MPI. This work
was accepted for publication at CCGrid 2013.

One-Sided Communication MPI-3’s has added signif-
icant new features for one-sided communication, which
make it useful for implementing high-level programming
models, libraries, and applications. In addition to sup-
porting all these new features in MPICH 3.0, we have
published papers on how to implement them efficiently
and on using MPI for shared-memory programming within a node (MPI+MPI).

Applications We interact closely with applications to enable them to use advanced functionality in MPI
(either directly or through domain-specific models). We recently demonstrated performance improvements
with massive-scale computations in various domains including chemistry, biology, and nuclear physics (see
Figure 1 for example).


