Traleika Glacier (X-Stack) Project

The Traleika Glacier project will research and mature software technol ogies addressing
major Exascale challenges, and get ready to intercept by the end of the decade. The
principals of this project are: Shekhar Borkar & Wilfred Pinfold (Intel), Rich Lethin
(Reservoir Labs), Rishi Khan (ET1), Prof Guang Gao (Delaware), Prof Laura Carrington
(UCSD), Prof Vivek Sarkar (Rice), Prof David Padua & Prof Josep Torrellas (UIUC),
and John Feo (PNNL).

The research agenda of this team addresses the mgjor Exascale challenges, namely (1)
energy efficiency, (2) scalability, (3) datalocality, (4) programmability, (5) execution
model, and (6) resiliency. We plan to address these challenges across the entire stack,
identifying solutions that are best implemented with an interdisciplinary approach,
working closaly with the entire X-Stack research community.

Our programming model primarily focuses on the disruptive part of MPI+X, although
MPI cannot be ignored. The programming model adheres to separation of concerns,
separating domain specification from HW mapping, expression of datalocality, globally
shared, non-coherent address space, and generation of HW specific event-driven-threads
(EDT). The execution model is data-flow inspired, with self-contained tiny EDTSs, with
dynamic, non-blocking, event-driven scheduling, observation based adaptation, all
implemented in a runtime environment.

Our approach to the programming system rests on three major components: Concurrent-
Collections (CnC), Hierarchical-Tiled-Arrays (HTA), and R-Stream optimizations. The
user code is compiled into a parallel intermediate language (PIL, GDG), and EDTs are
generated from this intermediate representation for various runtime systems.

Presently we are experimenting with four different runtime systems: (1) Intel research
runtime (IRR) targeting the Intel Straw-man architecture, (2) ETI’s SWARM for awide
range of parallel machines, (3) Delaware’s DARPTS exploring EDT program execution
model using portable C++, and (4) Rice' s Habanero-C which interfacesto IRR and CnC.
We are working towards converging to a single Open Collaborative Runtime (OCR),
adopting salient features from these disparate runtime technologies, and make it available
to the community for research; a preliminary version of OCR is already released. Our
runtime research will focus on locality aware scheduling, adaptive performance tuning of
the hardware, dynamic data movement, and introspective dynamic optimization of the
system.

We have instrumented a straw-man architecture adopting the programming and execution
models, and the HW implementation of this architecture is evaluated to ensure
implementation capable of meeting the Exascale goals. This architectureis captured in
two simulators for research, namely AFL and FSIM. AFL works with the Intel research
runtime API’ s and extensions, executes native code on the host processor, runs fast, and

also generates useful statistical information for tuning. However, it does not model the
straw-man architecture, and is primarily targeted for rapid application devel opment.

EDI:It_r!ﬂ Engine {CE| Lecution Engine [XL]
== v Optimized forapps " « — |
5= Large local stores T
o B o danta lacalit
e il

ey Bad

Dpiimi:mﬁnr [SRF LT e e Sprerr| il o lpreems

mpdel and resiliency

Large local stores (|locality) Hu MRS, & ==
—Z ZD I IZ Hierarchical, heterogeneous interconnect
Sensors for self-awa nenes - =

Fime grain energy managerment
Processar Node with DEAK

BEE

FSIM, the functional simulator, models the straw-man architecture, memory and network
hierarchies, runs reasonably fast, generates useful statistics, and runs massively parallel
and distributed. It is not clock accurate; nevertheless, it is good enough for the entire
system evaluation. We are working towards implementing simple timing information in
this simulator. These simulators are accompanied by a set of tools for post processing
statistics into meaningful results such as energy consumption, data movement, and so on.
The simulators are fairly accurate for evaluation using comparisons rather than absol ute,
and thus will be used to compare architectural features, programming constructs, runtime
features, and algorithms.

Separation af CF & KE Energy Eficiency

Larje ksl stores Data_l-.:.rmli'l-,-
Sensoes: cell-swareness Algorithmsand | fesliency Highlewsl notatians
Fine grasn E management Aﬂﬂﬂﬂﬂlﬁ c:np-lpr
Straw-man System Transformation:
Archi Saparation of domain
tecture PGM SYStEM cpecification & uning
Ent, HTA, R-Stream
Y Liser
Simul Tools
il ;t_:];:_l Defined Generate codelets
. : Objective Taols |
Mative & Lget code = Low level Comgilers,
axscution, PML > LA
Slsau_stlcs
System SW
HW/5W co-desgn Exec Modsl, Open Do schsndiling of
Reactive & prosctive Rumtime: codelets
Rﬂ‘l“hﬂw Seff-aweare, Fne gran
AsymptoticN-modular TESOLINDE Management
Rdundancy Resibency manager

The flowchart depicts our evaluation flow. We will work closely with the co-design
centers to understand proxy applications, extract small idioms and kernels, program them
using our programming system, run them in the simulation environment using the
runtime system, and eval uate the entire system towards effectiveness of meeting the
Exascale goals. Thiswill be an iterative process, with learning incorporated into changes
in the architecture, programming system and the runtime. Our research in al disciplines
will be evaluated as a compl ete system using this infrastructure, and thus will be matured
for atimely intercept to the Exascale system.

For details, please visit our website: https://sites.google.com/site/tral eikagl acierxstack/

https://sites.google.com/site/traleikaglacierxstack/

