X-ARCC:
Extreme-Scale Adaptive
Resource-Centric
Computing

Steven Hofmeyr John Kubiatowicz
LBNL UC Berkeley

The OSR Principal Investigators (PI) Meeting
May 23" 2016

¢
I’J)f,-(,'o

O SWARM | A3

ssssssss

X-ARCC Project

 Goals
- Discover and demonstrate useful mechanisms for exascale OS

- Experimental research, not engineering effort (no production
code)

* Collaboration between LBNL and UCB SwarmLab

- Converging trends between HPC, Cloud, Mobile & Swarm

- Energy is key limitation

- Massive parallelism in dynamic, unpredictable environments
* Continuation of Tessellation OS project

- Collaboration between LBNL and UCB Parlab

- That was focused on single node multicore

. A I,
cecee &8
BERKELEY LAB O SWARM | A3

ssssssss

Exascale Systems will be Dynamic

 Changing hardware resources: loss of nodes, addition
of new nodes, DVFS, etc

 New asynchronous, massively parallel programming
models

* Applications can change on the fly, e.g. visualization
to steer simulation

Address with Adaptive Resource-Centric Computing
(ARCC):

Change resource allocations dynamically according to
current application behavior & system state to maximize
performance & utilization for all applications

¢
r;’r;r;o

O SWARM | A3

ssssssss

ARCC Feedback Control Loop

Mechanisms for dynamically allocating resources to
multiple competing apps or app components based on
performance requirements

Performance monitoring
&-feedback (heartbeats)

Policy
Engine
Application Application
Allocation _
decisions Grant resources
Kernel
Resources

. A I,
: r"_"}| ""l Q0 (Jo
BERKELEY LAB O SWARM | A3

ssssssss

Exascale Apps will be Complex

 Multiple components, each with different resource
requirements, different scheduling, etc

* In-situ & in-transit analytics and visualization
« Complex pipelines, e.g. genome assembly

 Modern languages, JITs, DSLs (big data, machine
learning)

* Node-local services, e.g scalable checkpoint/restart

ARCC: support multiple independent apps/app
components per node, i.e. share nodes

¢
r;’r;r;o

O SWARM | A3

ssssssss

Node Sharing Simulations

* Sharing instead of batch scheduling?

- Simulations of batch vs timeshare ['f'fi" 1
- Real job data from Edison over 306 ff
620 days e
~ Utilization ~90% ful 7
- 50% core-hours used by “”Hﬁf ¥ ¥ ¥ 7 7 7 2 P o
jobs > 100 nodes, 20% used by o0 Sies (ofes)

jobs > 1000 nodes

4096
2048
1024

= B
5=

° I I - o 512
Measuring QoS/fairness : 4
- Slowdown = turnaround / DWT & » o
Eﬁm 16 7]
- Batch scheduling: S o :
longer-running, smaller jobs an > . (W K
have lower slowdown BEp LT

- Timeshare: constant slowdown

. A I,
£ “'F'}| ""| Q0 r)o
BERKELEY LAB O SWARM | A3

ssssssss

Scaling Implications

For scalable apps, what concurrency is best on a busy
system to minimize turnaround?

HipMer

16h -

Turnaround Time

15m: — Timeshare

4m L — Batch
2m L — Real

Modes

L S - S N S L L LU

Turnaround Time

128h

64h L
32h
16h -

&h

2m |

im

GTC

2h |

ih |
J0m -
15m |
am |-

— Timeshare
| —— Batch
— Real

2 2 2 A P F 7 A F g0 ot H

Modes

* Batch: turnaround doesn't scale due to bias in slowdown
 Timeshare: turnaround scales (as expected)

—_— A
CEOreee ""l

BERKELEY LAB

¢
I’J)f,-(,'o

O SWARM | A3

ssssssss

Impact of Noise

a
(=)
(=]

* Simple noise model |

- Each minute, 0.001 prob. of each = mosare
node running at (2, 1) speed

- More benign than turbo-boost?

- Big increase in the long-tail of
batch scheduled jobs

470.3

N w Py
=} =} o
(=) [=] o
T T

Average Stretch

=]
S
;

* Noise and prog. model N
- Relax assumption about o——
BSP, e.g. async tasking | - mesnare =

Il timeshare no sync

w
(=]
T

- Noise-tolerant

xS [ae)
o a
T T

- Even if async prog models
are less efficient, overall
system utilization &
turnaround could still be better

75th Percentile Stretch
o

o

o o

Normal

S §od

BERKELEY LAB O SWARM | A3

ssssssss

Node Sharing with X-ARCC

Node sharing AND performance predictability
- Cells and two-level scheduling

Each app runs in a cell:
- Guaranteed resources & enforced performance isolation
“Bare metal” control over own resources

System services:

- Services provide QoS guaranteed access to shared hardware
resources

- Services run in cells and can use other services

Communication between cells via secure channels

. A I,
”"'_’}H"'l Q0 I’Jo
BERKELEY LAB O SWARM | A3

ssssssss

Two-Level Scheduling

« Separate allocation of resources to cells (1 level)
from management of resources within cells (2" level)

* First Level (traditional OS role)

- Manage conflicting resource
demands of multiple apps

- Space-time partitioning with
gang-scheduling (predictability
& flexibility of resource allocation) SPacg

 Second-level (runtimes role)
- Manage resources for single app or set of cooperating apps

— Customization through user-level scheduling & memory
management

- Minimize OS & other interference to make runtime design &
implementation simpler & performance modeling possible
\| A &8

BERKELEY LAB O SWARM | A3

ssssssss

Space

Time

Implementing X-ARCC

* Use virtualization (Xen)
- Supports both bare-metal runtimes & full virtual machines

* First level (hypervisor):

- Gangi scheduler for cells CELL CELL e
. . L. resource application application systt_am (23us|:cg\r!:|
— Multiple scheduling policies: | broker service | gipodulers
gang, best-effort, EDF, (CellOS) (Linux) | (CellOS)
dedicated, event-driven <C,I:hanE:>
' //\\ L/\\—\-
 Second level (VM): P 4 Lovel
Gangi
- Developed CellOS, | | Scheduler
. Dedicated Shared
baSed on Xen Mini-0OS Ezsg:rr:ses HARDWARE Ezscr:ltértces

— Customizable scheduling

- Simple memory management (no virtual memory)

- Services include networking, file system, block, log & gui

- But: unikernels are becoming popular - use instead of CellOS

. A I,
cecee &8
BERKELEY LAB O SWARM | A3

ssssssss

Reducing Noise

Linux Native
* Experiments
- selfish detour on two socket machine ol
- After 15s, kernel build on other socket v
- X-ARCC config: Xen+Gangi+unikernel £=| j‘w’-*w;
* Results
.)] . ”k."‘.‘,’*‘.w‘mf.%lu'#.;’.?‘rM',&‘,E i sl
- Without competing workload, Linux N
is more noisy than X-ARCC config X-ARCC config
- Using all Linux isolation features o

(cgroups, pinning, etc) still does not
Isolate competing workload 5

- Competing workload no effect on
X-ARCC config
 Found Kitten similar to X-ARCC

i - mikii i iy il i
) T |
0 5 10 15 20 25 30

s A Timestamp (s)
corersf 60

BERKELEY LAB O SWARM | A3

ssssssss

Monitoring Energy Usage in X-ARCC

* Need to treat energy as first class resource
- Must accurately measure & attribute energy usage to cells
- But energy measurements are coarse-grained, e.g. Intel RAPL
counters are package level & wall metering is at node level
« XeMPower
- Based on socket-level energy measurements with RAPL

- Hardware performance counter models account for energy of
simultaneously running cells

- Estimators go from coarse-grained physical measurements to
fine-grained energy attribution

* MARC

- Generate models of power consumption of running
applications

,..\l N With M. Feroni, A. Damiani, A. Corna & M Santambrogio (Politecnico Milano) o 0

il P,

FEeFeee () r) ()

! O SWARM | /B

BERKELEY LAB
uuuuuuuu

XeMPower Implementation

* Hypervisor instrumentation
- Track context switches in first-

(_ XenKernel X Dom0O)
level scheduler = o JE N
- Record counters: cycles, LLC, #| |
branch, RAPL e :
szl B2 |- . R
« Service running in cell S e
2 £ [IB2 = |m
- Aggregate counters 8 5 2 [E2
- Uses model of energy to split spplB S el | gl
= >
socket measurements & e o 2 ﬂ
attribute to cells e |-
. . 3
* Monitoring overhead < 1% - =
(Core 0 Core N j

== A
o §od

BERKELEY LAB O SWARM | A3

ssssssss

MARC

* Modeling and Analysis of Resource Consumption

- Use traces from XeMPower Domain Power Consumotion

. Real vs Modeled 10x
- Model energy consumption of

Domain modeling on different physical machines

Xen domains with < 5% error *
% 60W il
* Energy modeling =

- Trends accurately approxd) 32W
by piecewise linear curves o Joh

- Identify configurations p o

- Approx energy Consumption e 1005 200 3008 4008 5005 Rs’o\'o/s|SE:7o-iOI63tado\sN’ ig)s(sw \1/0\6/05
Of Config With Iinear fit — Real Power Trace —Mudeledo:::w Modeled on PHY2

- Build energy model on one physical machine and reuse for
different machine with good accuracy

-

\| \'?l &&

BERKELEY LAB O SWARM | A3

ssssssss

Scheduling Distributed Services

* Distributed services can be a problem
- Independent decisions generate noise for distributed apps

- e.g. garbage collection (GC)

 Taurus prototype

(important for cloud,
not HPC - yet)

other services, e.g. local 1L I11]] HWHHHHHHWHHHHHHHHHHH‘

C/R, analytics, profiling, etc.

(a) Baseline System (no coordination)

Multinode fault-tolerant

framework for coordinating ~ * ﬂﬂHHHHHHHHHHHHHIHHHHHWHHHHW

distributed shared services

. (b) Coordinating GC (Stop the-Universe)
No app changes (unless desired)

No change to JVM interface
First use case: GC in managed languages (Java)

¢
r;’r;r;o

O SWARM | A3

ssssssss

Taurus Implementation

* Multinode runtime for services
- Slmple pOIICy DSL descrlbes Application Node 0 H Application Node 1

strategies for coordinating
] | State | | State
services

Runtime System Runtime System

- Inputs: system & app state
- Outputs: policy-based plan

- e.g. when to activate GC
given memory usage

« Scalable & fault tolerant
— Cluster is divided into coordination groups

Memory-
Occupancy,
State

Plan,
Reconfiguration,
State updates

Multi-Node Runtime System

- Each group elects a leader that receives inputs, executes
policy & distributes the plan

- Distributed consensus protocol to migrate state & ensure
leader exists after node failures

. A l,
: “'F'h| ""| Q0 I’)o
BERKELEY LAB O SWARM | A3

ssssssss

Taurus Performance

 Experiments with GC in cloud apps (Java)
- Significant performance improvements in latency & throughput
- e.g. Spark PageRank, reduce time 21% & tail latency 50%

 Managed language 100.0%

features for HPC 99.0%

- Productivity, e.g. automatic 9s.0%
memory management

97.0%

- New style scientific glpps, 0600, T Vanila
€.g. genome assembly 1 With Taurus

- Machine learning (Spark 0.25 05 12 A 8 16 %2 6 128
- : tion ti
is a premier ML framework) peration time (ms)

 Beyond managed languages
- Noise reduction through coordination of services in general
- Component of cell runtime

. A I,
”"'_’}H"'l Q0 I’Jo
BERKELEY LAB O SWARM | A3

ssssssss

DJ Distributed Runtime

* Exploring multinode runtimes

- Java platform that enables objects to be relocated and
remotely accessed

- Appear as single JVM

- Transparent to
programmers

* Functioning prototype
- Overlay layer on top of

JVMs _V \
- Performance tuning 0L I ‘ I ' I '
. 15 0
still needed —T—— —— —
BERKELEY LAB O SWARM | /B

sssssss

Advanced Memory Features

* Nephele recoverable memory
- Detects changes to recoverable memory regions

- Replicates memory to remote nodes using RDMA
Architecture

 Simple API:

- Funcs for allocation

RVM Library
Memory management and
- Func to mark detection of changes

consistency points Remote Memory Interface
Memory replication and atomicity

Atomic Copy
Atomic updates to block store

- Minimal app changes

- Implement in cell runtime, e.g. barrier -» consistency point

« Efficient (even unoptimized)
- Replication 5x faster & recovery 10x faster than BLCR

=g ¢
S §od
BERKELEY LAB O SWARM | A3

ssssssss

Conclusions

« X-ARCC: discover & demonstrate potential mechanisms
for an exascale OS

* Sharing nodes between applications can be beneficial
and be done with low noise

 Implemented lightweight runtimes (CellOS, D1J),
advanced scheduling (Gangi), distributed resource
management (Taurus), power monitoring (XeMPower)
& modeling (MARC), recoverable memory (Nephele)

¢
l’))(,ll’)o

O SWARM | A3

ssssssss

