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X-ARCC Project

● Goals
– Discover and demonstrate useful mechanisms for exascale OS
– Experimental research, not engineering effort (no production 

code)
● Collaboration between LBNL and UCB SwarmLab

– Converging trends between HPC, Cloud, Mobile & Swarm
– Energy is key limitation
– Massive parallelism in dynamic, unpredictable environments

● Continuation of Tessellation OS project

– Collaboration between LBNL and UCB Parlab

– That was focused on single node multicore



Exascale Systems will be Dynamic

● Changing hardware resources: loss of nodes, addition 
of new nodes, DVFS, etc

● New asynchronous, massively parallel programming 
models

● Applications can change on the fly, e.g. visualization 
to steer simulation

Address with Adaptive Resource-Centric Computing 
(ARCC):

Change resource allocations dynamically according to 
current application behavior & system state to maximize 
performance & utilization for all applications



ARCC Feedback Control Loop

Mechanisms for dynamically allocating resources to 
multiple competing apps or app components based on 
performance requirements



Exascale Apps will be Complex

● Multiple components, each with different resource 
requirements, different scheduling, etc

● In-situ & in-transit analytics and visualization
● Complex pipelines, e.g. genome assembly
● Modern languages, JITs, DSLs (big data, machine 

learning)
● Node-local services, e.g scalable checkpoint/restart

ARCC: support multiple independent apps/app 
components per node, i.e. share nodes



Node Sharing Simulations

● Sharing instead of batch scheduling?
– Simulations of batch vs timeshare

– Real job data from Edison over 
620 days

– Utilization ~90%
– 50% core-hours used by 

jobs > 100 nodes, 20% used by 
jobs > 1000 nodes

● Measuring QoS/fairness
– Slowdown = turnaround / DWT

– Batch scheduling: 
longer-running, smaller jobs 
have lower slowdown

– Timeshare: constant slowdown



Scaling Implications

For scalable apps, what concurrency is best on a busy 
system to minimize turnaround?

                      HipMer                                               GTC

● Batch: turnaround doesn't scale due to bias in slowdown
● Timeshare: turnaround scales (as expected)



Impact of Noise

● Simple noise model
– Each minute, 0.001 prob. of each 

node running at (½, 1) speed
– More benign than turbo-boost?
– Big increase in the long-tail of 

batch scheduled jobs

● Noise and prog. model
– Relax assumption about 

BSP, e.g. async tasking
– Noise-tolerant
– Even if async prog models 

are less efficient, overall 
system utilization & 
turnaround could still be better



Node Sharing with X-ARCC

● Node sharing AND performance predictability
– Cells and two-level scheduling

● Each app runs in a cell: 
– Guaranteed resources & enforced performance isolation
– “Bare metal” control over own resources

● System services:

– Services provide QoS guaranteed access to shared hardware 
resources

– Services run in cells and can use other services 

● Communication between cells via secure channels



Two-Level Scheduling

● Separate allocation of resources to cells (1st level) 
from management of resources within cells (2nd level)

● First Level (traditional OS role)
– Manage conflicting resource 

demands of multiple apps 
– Space-time partitioning with 

gang-scheduling (predictability 
& flexibility of resource allocation)

● Second-level (runtimes role)
– Manage resources for single app or set of cooperating apps
– Customization through user-level scheduling & memory 

management
– Minimize OS & other interference to make runtime design & 

implementation simpler & performance modeling possible



Implementing X-ARCC

● Use virtualization (Xen)
– Supports both bare-metal runtimes & full virtual machines

● First level (hypervisor):
– Gangi scheduler for cells
– Multiple scheduling policies: 

gang, best-effort, EDF, 
dedicated, event-driven

● Second level (VM):
– Developed CellOS, 

based on Xen Mini-OS
– Customizable scheduling
– Simple memory management (no virtual memory)
– Services include networking, file system, block, log & gui
– But: unikernels are becoming popular – use instead of CellOS 



Reducing Noise 

● Experiments
– selfish detour on two socket machine

– After 15s, kernel build on other socket

– X-ARCC config: Xen+Gangi+unikernel

● Results
– Without competing workload, Linux 

is more noisy than X-ARCC config

– Using all Linux isolation features 
(cgroups, pinning, etc) still does not 
isolate competing workload

– Competing workload no effect on 
X-ARCC config

● Found Kitten similar to X-ARCC

Linux Native

X-ARCC config



Monitoring Energy Usage in X-ARCC

● Need to treat energy as first class resource
– Must accurately measure & attribute energy usage to cells
– But energy measurements are coarse-grained, e.g. Intel RAPL 

counters are package level & wall metering is at node level

● XeMPower
– Based on socket-level energy measurements with RAPL
– Hardware performance counter models account for energy of 

simultaneously running cells
– Estimators go from coarse-grained physical measurements to 

fine-grained energy attribution

● MARC

– Generate models of power consumption of running 
applications

 With M. Feroni, A. Damiani, A. Corna & M Santambrogio (Politecnico Milano)



XeMPower Implementation

● Hypervisor instrumentation
– Track context switches in first-

level scheduler
– Record counters: cycles, LLC, 

branch, RAPL

● Service running in cell
– Aggregate counters
– Uses model of energy to split 

socket measurements & 
attribute to cells

● Monitoring overhead < 1%

 



MARC

● Modeling and Analysis of Resource Consumption
– Use traces from XeMPower

– Model energy consumption of
Xen domains with < 5% error

● Energy modeling
– Trends accurately approxd 

by piecewise linear curves

– Identify configurations

– Approx energy consumption 
of config with linear fit

– Build energy model on one physical machine and reuse for 
different machine with good accuracy



Scheduling Distributed Services

● Distributed services can be a problem
– Independent decisions generate noise for distributed apps
– e.g. garbage collection (GC) 

(important for cloud, 
not HPC – yet)

– Other services, e.g. local 
C/R, analytics, profiling, etc.

● Taurus prototype
– Multinode fault-tolerant 

framework for coordinating 
distributed shared services

– No app changes (unless desired)
– No change to JVM interface
– First use case: GC in managed languages (Java)



Taurus Implementation

● Multinode runtime for services
– Simple policy DSL describes

strategies for coordinating 
services

– Inputs: system & app state
– Outputs: policy-based plan
– e.g. when to activate GC 

given memory usage

● Scalable & fault tolerant
– Cluster is divided into coordination groups
– Each group elects a leader that receives inputs, executes 

policy & distributes the plan
– Distributed consensus protocol to migrate state & ensure 

leader exists after node failures



Taurus Performance

● Experiments with GC in cloud apps (Java)
– Significant performance improvements in latency & throughput
– e.g. Spark PageRank, reduce time 21% & tail latency 50%

● Managed language 
features for HPC
– Productivity, e.g. automatic 

memory management
– New style scientific apps, 

e.g. genome assembly
– Machine learning (Spark 

is a premier ML framework)

● Beyond managed languages
– Noise reduction through coordination of services in general
– Component of cell runtime



DJ Distributed Runtime

● Exploring multinode runtimes
– Java platform that enables objects to be relocated and 

remotely accessed 

– Appear as single JVM

– Transparent to 
programmers

● Functioning prototype
– Overlay layer on top of 

JVMs

– Performance tuning 
still needed



Advanced Memory Features

● Nephele recoverable memory
– Detects changes to recoverable memory regions
– Replicates memory to remote nodes using RDMA

● Simple API: 
– Funcs for allocation 

– Func to mark 
consistency points

– Minimal app changes
– Implement in cell runtime, e.g. barrier  consistency point→

● Efficient (even unoptimized)
– Replication 5x faster & recovery 10x faster than BLCR



Conclusions

● X-ARCC: discover & demonstrate potential mechanisms 
for an exascale OS

● Sharing nodes between applications can be beneficial 
and be done with low noise

● Implemented lightweight runtimes (CellOS, DJ), 
advanced scheduling (Gangi), distributed resource 
management (Taurus), power monitoring (XeMPower) 
& modeling (MARC), recoverable memory (Nephele)  


