[image:] XPRESS: eXascale PRogramming [image:] Environment and System Software

Overview. The XPRESS Project is one of four major projects in the DOE Office of Science Advanced Scientific Computing Research X-Stack Program. The innovative system software stack of XPRESS is poised to enable practical and useful exascale computing by directly addressing the critical computing challenges of efficiency, scalability, and programmability through introspective dynamic adaptive resource management and task scheduling. Here we demonstrate efficient and scalable operation of trans-Petaflop performance systems using XPRESS for DOE mission-critical applications.
[image:]
Figure 1: XPRESS Programming Environment Components

Features. Specific components of the XPRESS System Architecture include:
· ParalleX: Indiana University - Cross-cutting execution model of system co-design
· LXK – Lightweight eXtreme-scale Kernel (Kitten): Sandia National Laboratories - Fourth-generation scalable compute node operating system
· HPX runtime system software: Louisiana State University, Indiana University - Supports introspection for guided computing through dynamic adaptivity
· Autonomic Performance Environment for Exascale (APEX), Resource Centric Reflection (RCR) – application introspection: University of Oregon, RENCI - A derivative of Tau instrumentation and monitoring software system, integration of low-level system data acquisition
· DOE applications: LBL, ORNL, SNL - Drives co-design and performance studies relevant to DOE
· RIOS: Interface between the operating system and the runtime system
· Conventional Programming Interfaces for legacy codes and skill sets: University of Houston, Stony Brook - MPI, OpenMP

[bookmark: _GoBack]Demos. In the following, we demonstrate notable features of the XPRESS stack, showing how XPRESS realizes the ParalleX execution model and that it is deployment-ready for prototype systems.

[image: faceadjacent.pdf][image: Slide1.png][image: Slide1.png]
Figure2: LULESH: Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics evolving a Sedov blast wave

[image:]
Figure 3: Concurrency throttling with APEX to stay under a 280 Watt per node power cap while executing LULESH on 512 cores of Edison, with hyperthreading.
Demo #1: We show the performance scalability of HPX-5 integrated with APEX. The demo shows the LULESH application running on NERSC Edison, using the Photon integrated communication library. APEX Introspection observes the application, runtime, OS and hardware to maintain the APEX state, while its Policy Engine enforces policy rules to adapt, constrain or otherwise modify the application behavior. This application shows APEX adapting to the runtime to turn hyper-threading down. Photon supports a tight coupling of the runtime system with the underlying network fabric that scales and remains performant in exascale environments.

[image:]
Figure 4: Effectiveness of dynamic load balancing with FMM application

Demo #2 – Visualization #1: One demonstrates the effectiveness of dynamic load balancing through global data relocation using the active global address space (AGAS) in HPX-5. With the Fast Multipole Method (FMM) application as an example, the visualization will show the reduction in communication due to dynamic global data rebalancing. The source and target spatial decomposition trees in FMM will be laid out next to each other with nodes in the tree colored based on their physical location. As the FMM application runs, HPX-5 will perform online profiling of accesses to the global data. During the load-balancing phase, the optimal data distribution will be determined by performing edge-cut recursive partitioning of the aggregated communication graph. The visualization will resume after global data rebalancing to show the apparent decrease in remote communication activity.
[image:]
Figure 5: Visualization demo of LULESH
Demo #2 – Visualization #2: One goal of asynchronous multithreaded runtimes is to tolerate latency with concurrency. This visualization depicts this capability in HPX-5 through two different instantiations of the LULESH mini app. The first is a traditional one domain per core decomposition that clearly demonstrates the underlying synchronous nature of the application. The second is an over-decomposition using eight smaller domains per core. The HPX-5 scheduler is aware of dependencies and schedules computation as it becomes enabled. This naturally results in overlapped communication and computation, as well as more effective cache use, and outperforms the MPI reference implementation by 15% at this scale.

Demo #3: Demonstrates HPXCL – An efficient API for programming GPGPU Clusters. Recently built supercomputers demonstrate that the number of GPUs and OpenCL devices in clusters are increasing rapidly. While these devices offer a whole new level of computing power, utilizing the GPUs is still difficult. Writing scalable OpenCL applications often takes more effort than the average user is willing to spend. We overcame this obstacle by implementing HPXCL, a scalable OpenCL API for distributed systems, on top of HPX-3, a scalable C++ runtime system.

[image:]
Figure 6: Demonstration of HPXCL

HPX is a paradigm shift from conventional parallel computing models such as MPI and OpenMP. In this model, lightweight threads that work on data in an active global address space are synchronized using local control objects, such as futures. In order to introduce GPUs into this scheme, HPXCL developers created a HPX component, which is a type of globally accessible C++ class, which sends an OpenCL kernel to a designated device. The results produced by the OpenCL device are encapsulated in a future. In this way, an application can off-load a section of code to an OpenCL device and continue doing useful work until the off-loaded data is ready.

To demonstrate this technique, we implemented a distributed Mandelbrot renderer. The values of the set are offloaded to the GPUs and the results are visualized on the host cores. In addition, we used Google Maps API to allow users to zoom into the image, which is rendered in real time. The demo runs on 32 GPUs in nodes of a standard Beowulf cluster at LSU.
[image:]
Figure 7: XStack Integration demo
Demo #4: This demo shows the operation of the XPRESS LXK OS infrastructure running the HPX-5 version of LULESH on KNL pre-release hardware. The LXK kernel will boot, detect and initialize all cores and memory, then launch HPX-5 LULESH in user level. HPX-5 is configured to initially run on all CPUs in the system, creating a single POSIX thread on each. As HPX-5 LULESH is running, the RCR driver in the LXK kernel will continuously monitor the power usage of the system and publish this information via the RCR blackboard (a page of memory) mapped into user-space. The APEX policy engine running in user-space will periodically read the power usage information from the blackboard and determine how many HPX-5 threads should be activated, performing dynamic concurrency throttling (DCT) to meet a desired power usage target. As the HPX-5 LULESH run progresses, the demo will show the number of HPX-5 threads to observed power usage.

image1.emf

Legacy	
OpenMP	 Legacy	MPI	

OpenUH	Compiler	

OpenUH	Run8me	
	
	
	

Open	MPI	Run8me	
	
	
	

C,	C++	Compiler	

HPX	
	
	

	

XPI	
	

HPX-3	 HPX-5	

RIOS	

Linux	 LXK	

Hardware	

RCR	

	
	
	
	
	

APEX	
	
	
	
	
	
	
	

Legacy	

OpenMP	

Legacy	MPI	

OpenUH	Compiler	

OpenUH	Run me	

	

	

	

Open	MPI	Run me	

	

	

	

C,	C++	Compiler	

HPX	

	

	

	

XPI	

	

HPX-3	 HPX-5	

RIOS	

Linux	 LXK	

Hardware	

RCR	

	

	

	

	

	

APEX	

	

	

	

	

	

	

	

image2.emf

image3.png

image4.png
(?|

image5.tiff
X/ Gnuplot

5000

5000

4000

Pouer

3000

2000

1000

Tine

Fower
thread cap
_Postel_sends_action mmm
Postie] result_action e
L
_Honol)_sends_action
_SBN3_sends action
_BBNS_result_action =
ZinitDonain_action s
advanceDonain action mem

36.4537 u= -468.72 ul= -2BEE.E7

image6.png

image7.png

image8.png

image9.emf

	

	

	

	

	

	

	

	

Application	

																																								Joules	

HPX	

	 APEX	

Energy	Policy	Engine	

RCR	Blackboard	

Node	Energy	Counter	User-Space	

RCR	Daemon	

MSR_PKG_ENERGY_STATUS	

LXK	

RCR	Driver	

MSR+PKG_ENERGY_STATUS	

	

LINUX	

	

Kernel-Space	

	

	

	

	

	

	

	

	

Application	

																																								Joules	

HPX	

	

APEX	

Energy	Policy	Engine	

RCR	Blackboard	

Node	Energy	Counter	

User-Space	

RCR	Daemon	

MSR_PKG_ENERGY_STATUS	

LXK	

RCR	Driver	

MSR+PKG_ENERGY_STATUS	

	

LINUX	

	

Kernel-Space	

image10.png
S. DEPARTMENT OF Offlce of

EN ERGY Science

image11.jpeg
Nationt Nuciea Secur

image12.jpg
£
j LSL)

image21.jpeg

image22.jpeg
A

f(reeeer ’m

BERKELEY LAB

image23.png
0OAK
RIDGE

image24.jpeg

image25.jpeg

image26.png

image27.jpeg
Sandia
National
Laboratories

image13.jpg

image14.jpg
A

f(reeeer ’m

BERKELEY LAB

image15.png
0OAK
RIDGE

image16.jpg

image17.jpg

image18.png

image19.jpg
Sandia
National
Laboratories

image20.jpeg
£
j LSL)

