
X-TUNE: Progress Report - Year 1

Progress Report for X-TUNE
Autotuning for Exascale: Self-Tuning Software to Manage

Heterogeneity
Lead Institution: University of Utah

Principal Investigator: Mary Hall
Postal Address: 50 S. Central Campus Drive, Salt Lake City, UT 84112

Telephone Number: 801-585-1039
Email: mhall@cs.utah.edu

Collaborating Institutions:

Paul Hovland, Jeff Hammond, Sri Hari Krishna Narayanan, and Stefan Wild
Argonne National Laboratory

Samuel Williams, Leonid Oliker, and Brian Van Straalen
Lawrence Berkeley National Laboratory

Jacqueline Chame, USC/ISI

Objectives We will develop a unified autotuning framework that seamlessly integrates
programmer-directed and compiler-directed autotuning, so that a programmer and the
compiler system can work collaboratively to tune a code, unlike previous systems that
place the entire tuning burden on either programmer or compiler. The proposed sys-
tem will dramatically improve generality and usability of autotuning technology through
an integrated, composable collection of tools, including an autotuning compiler frame-
work, a library API, a code transformation framework, compiler decision algorithms and
performance models. To maximize productivity impact of autotuning and make it ap-
proachable by many users, it should be encapsulated in domain-specific tools developed
by expert users and made available to others. To this end, we will demonstrate autotun-
ing on computations from AMR MG, Combustion Co-Design Center, TCE and Nek5000,
and will work with DOE to define a small number of other mini-app demonstrations.
We will identify opportunities for integration, software reuse and demonstrations with
other X-stack projects.

Summary of Activities

The X-TUNE team has made significant progress in its first six months. We conducted
research in the following areas:

• Models and Compiler Decision Algorithm

• Autotuning AMR Multigrid

• Optimizing Nekbone

• Optimizing NWChem

In September 2012, PI Hall participated in the X-Stack kickoff PI meeting. In Octo-
ber 2012, Williams presented X-TUNE in a poster session at the Exascale PI meeting.
During February and March, 2013, PI Hall participated in videoconferences to design
the SET guidelines. In March 2013, Hall, Oliker, Williams and van Straalen all partici-
pated in the X-Stack PI meeting. Hall gave a presentation, participated in a panel and
provided a demonstration.

1

domain-specific
algorithm

search space

empirical evaluation

code variant with
instantiated parameters

program with autotuning
language extensions

programmer-specified
mappings (recipes)

compiler
decision

algorithms

optimized program

code transformation and code generation

models

search engine

performance bounds

starting points

power bounds

domain-specific library

domain-
specific

algorithm

code variant with
parameter ranges
code variant with
parameter ranges
code variant with
parameter ranges

architectural features

tensor computations

ca-amr multigrid

krylov methods

Figure 1.1: Proposed X-TUNE end-to-end autotuning system.

1 X-TUNE Overview
Figure 1.1 depicts the proposed X-TUNE system. Expert developers employ autotun-
ing under their control either by expressing code variants and optimization parameters
directly in their application code using a library API or by directing the compiler’s opti-
mization and translation process by providing transformation recipes. The code variants
may include different algorithms for implementing a computation, or implementations
partially customized to different target processors (e.g., in today’s systems, this might
be OpenMP code for a conventional multicore and CUDA code for a GPU). Using com-
piler decision algorithms, the compiler may additionally automatically derive a set of
variants that reflect different code generation strategies, different data placement in the
memory hierarchy, and code customized to different target processors. The compiler
decision algorithms are written in a scripting language and designed so that, in addition

2

X-TUNE: Progress Report - Year 1

to the standard decision algorithms, custom decision algorithms can be implemented by
developers of domain-specific tools.

The variants and optimization parameters provided by the programmer and compiler
form a combined search space that describes the myriad possible mappings of the soft-
ware to a variety of hardware platforms, including multiple types of processors in a
heterogeneous system. An existing search algorithm navigates this search space using
a variety of pruning strategies to efficiently discover the best implementation for a par-
ticular anticipated collection of execution contexts. An important aspect of the search
process is the development and use of models to prune away uninteresting portions of
the search space and provide bounds on the expected behavior of optimization criteria
using knowledge of the architecture and analysis of the application software.

Code generation is applied to each point in the search space to be evaluated empirically.
The result of this tuning process is either a domain-specific library, which abstracts away
how autotuning was used in the application deployment, or an optimized program. In
either case, some code selection decisions are deferred until run time when the entire
execution context is known.

The proposed system is being constructed from significant extensions to existing soft-
ware that includes the ROSE compiler infrastructure, CHiLL and CUDA-CHiLL auto-
tuning compiler technology and polyhedral transformation, code generation support in-
tegrated into ROSE, PBound modeling software also integrated with ROSE, and Chom-
boFortran and Tensor Contraction Engine domain-specific tools, as well as application
and computation kernels to which autotuning has been applied in a manual way.

3

2 Activities

2.1 Models and Compiler Decision Algorithms

One of X-TUNE’s goals is to automate the generation of optimization strategies, for
classes of applications for which compiler models and analysis can derive enough infor-
mation to assist the automation. As a first step towards this goal we have implemented
a compiler decision algorithm that uses models in PBound to identify data reuse and
guide the generation of optimization strategies for improving locality in dense matrix
computations. In this section we describe the integration of PBound, a compiler decision
algorithm and CHiLL.

2.1.1 PBound

PBound models the performance bounds of an application. Given the application’s
source code and an architectural description, PBound generates parameterized closed-
form expressions for the application’s computational and data requirements. These are
then combined to generate performance bounds. PBound uses data reuse analysis to
model the application’s cache behavior. Under X-TUNE, we have refined PBound’s
data reuse model to provide results at a finer granularity and have identified further
refinements to be made in the future. We have begun to examine how PBound can be
used to guide the empirical search algorithm through parameter selection.

2.1.2 CHiLL

CHiLL is a polyhedral transformation and code generation system that has been designed
to support autotuning and programmer-directed compiler transformation. Underlying
CHiLL is the use of the ROSE abstract syntax tree, which allows the system to exploit
ROSE analyses, frontend capabilities and additional code optimizations. (A thin layer
called CUDA-CHiLL takes as input higher-level GPU transformation recipes and gener-
ates the corresponding CHiLL commands.) Each compact CHiLL transformation recipe
represents a parameterized description of a search space of possible implementations
that can be automatically generated (that is, a sequence of code transformations and
their associated optimization parameters). From the input code and a transformation
recipe with instantiated optimization parameters, CHiLL automatically generates a code
variant. Therefore, the integrated compiler decision algorithm uses PBound models to
guide the automatic generation of CHiLL transformation recipes.

4

X-TUNE: Progress Report - Year 1

2.1.3 Locality Decision Algorithm

The main goal of this compiler decision algorithm is to improve locality of dense matrix
computations at all levels of a memory hierarchy, based on Chen et al.’s autotuning
locality algorithm published in CGO 2005. The algorithm relies on PBound to identify
and quantify data reuse, and it uses such information to select transformations that
will result into optimized code variants. Such transformations include loop interchange,
loop tiling, loop unrolling and scalar replacement. The output of the algorithm is a set
of parameterized transformation recipes, each of which is called a master code variant.
A search engine subsequently instantiates the optimization parameters to produce a
transformation recipe with fixed parameter values (a code variant), which CHiLL uses
to generate the transformed code. Algorithm 1 is a somewhat simplified description of
the current implementation.

For each level of the memory hierarchy, the algorithm queries PBound to determine
the loop that carries the most reuse, and the corresponding references with reuse. To
exploit this reuse the algorithm selects the transformations to be applied to loops that
do not carry temporal reuse for these references, according to the memory level: loop
tiling for cache levels and unroll-and-jam for the register level. When tiling is applied,
the algorithm generates an extra code variant in which the data accessed within a tile
is copied to a temporary data structure, to avoid cache conflicts.

The output of the algorithm is a set of variants, where each variant is represented as
a loop order, a set of loops to unrolled, a set of loops to be tiled, and a set of data to be
copied. For each variant, the algorithm emits the CHiLL commands (transformations)
needed to achieve the code variant’s loop order, to tile and unroll loops, and to copy
tiled data to temporary arrays.

2.1.4 Integration

We have coupled PBound’s data reuse model and source code analysis to the decision
algorithm, which in turn has been coupled to CHiLL. To keep the decision algorithm as
generic as possible we developed input and output interfaces to separate the algorithm
from the generation and consumption of output and input respectively. Our input inter-
face links the algorithm with PBound or any tool that models data reuse analysis and
compiler that provides information regarding an application’s loop nests and references.
Our output interface links with CHiLL or any tool that can use the output from the
decision algorithm to transform code.

2.2 Autotuning AMR Multigrid

Based on the relationship between computational characteristics and trends in com-
puter architecture, AMR MG codes exhibit a number of performance-optimization chal-
lenges within a node including performance bound by bandwidth, a variable and un-
predictable degree on fine- and medium-grained parallelism, and complex domain and

5

X-TUNE: Progress Report - Year 1

Algorithm 1 DeriveVariants
Algorithm DeriveVariants (variant)
Variants ← variant
Loops ← variant.Loops
Refs ← variant.Refs
level ← 0
while Loops 6= ∅ and level < MEMORY LEV EL do

L ← MostProfitableLoops (Loops, Refs)
newVariants ← ∅
foreach v ∈ Variants do

foreach l ∈ L do
newVariants ← newVariants ∪ GenerateVariant (v, l, level)

Variants ← newVariants
Loops ← Loops− L
level ← level + 1

foreach v ∈ Variants do
Order(v.ControlLoops)
Push(v.ControlLoops, v.LoopOrder)

return (Variants)

GenerateVariant(variant, loop, level)
v ← variant
v.Loops ← v.Loops− loop
RefsWTemporalReuse ← MostProfitableRefs(loop, v.Refs)
if RefsWTemporalReuse 6= ∅ then

if level == REGISTER LEVEL then
foreach l ∈ v.Loops do

< lU , Ul > ← Unroll(l)
v.Loops ← v.Loops −l + lU

v.Params (lU) ← Ul

Push(loop, v.LoopOrder)
return (v)

else
foreach l ∈ v.Loops do

if l /∈ v.ControlLoops then
< lT , lC , Tl > ← Tile(l)
v.Loops ← v.Loops −l + lC

v.ControlLoops ← v.ControlLoops +lC

Push(lT , v.LoopOrder)
v.Params (lT) ← Tl

Push(l, v.LoopOrder)
v copy ← GenCopyVariant (v, RefsWTemporalReuse, l, (Ti, i ∈ v.LoopOrder))
return (v, v copy)

6

X-TUNE: Progress Report - Year 1

coarse-fine boundary conditions. Our work addresses these significant challenges, pro-
ducing performance-portable, tuned code in an automated fashion.

As a basis for the initial many-core multigrid studies, we have adopted the compact
multigrid benchmark from an SC’12 paper by Williams et al. In the paper, signifi-
cant manual optimization for locality, prefetching, and SIMD as well as orchestration of
parallelism was required in order to get good performance. Under X-TUNE, Utah re-
searchers in collaboration with LBL are extending the CHiLL transformation framework
to support these transformations automatically.

Scientists create operators by composing simpler operators. For example a smooth
operation may be composed of Laplacian, Helmholtz and a Gauss Seidel Red Black
operator, as in our benchmark. For computations on 3D grids, each of these operators
is a three deep nested for-loop inside a time step loop, shown below.

for (t=0; t<sweeps; t++) {

for (k...){ for (j...){ for (i...) { // LAPLACIAN OPERATOR which writes to temp[k][j][i]...} }}

for (k...){ for (j...){ for (i...) { // HELMHOLTZ OPERATOR which reads and writes to temp[k][j][i]...} }}

for (k...){ for (j...){ for (i...) {

if ((i+j+k+s+1)%2)//RED BLACK GAUSS SEIDEL OPERATOR reads in temp[k][j][i], writes to phi[k][j][i]... }}

}

The first optimization is to fuse the three loops together (at the maximum nesting
depth), using dependence analysis and data-flow analysis to verify legality. This version
of the fused code can be further improved by substituting the array reference to the
temp array with a scalar, to eliminate memory traffic. With this fused version we can
generate a wavefront version of the smooth function. In CHiLL, wavefronts are derived
using loop skewing and loop permutation. We can reduce communication across sockets
by adjusting the ghost zone from the wavefront; this adjustment can be explored through
autotuning, which is something we plan to do in future work. Results for these three
versions of code along with an unfused version are shown in Figure 2.1.

Recently, we have developed a new transformation to support fusion of residual and
restrict functions. This transformation must map from the iteration space of a fine grid
into a coarser grid, and reorder memory accesses to reduce memory traffic. We have a
prototype implementation, and will provide results in the next report.

Concurrently, LBL researchers have been updating the code and evaluating it on Blue
Gene/Q, Kepler, and Xeon Phi. Although these architectures are far more energy effi-
cient than their commodity CPU counterparts, attaining peak performance rquires much
more of software (essentially, in order to save energy, their designers have shifted the
onus from hardware to software). Discovery of the the performance optimization and
parallelization challenges on these architectures will be fed back into CHiLL so that it
may automatically exploit them. In this vein with have collaborated with researchers
at both Intel and NVIDIA. Third, we are developing a high-order version of the code
that performs more flops per unit of data moved but has superior convergence rates.
In the past (when flop-limited), these additional flops could impede performance. How-
ever today and in the future (data-movement limited) we have compute to spare these
high-order methods are thus a better solution for exascale architectures. Finally, we
are exploring alternate threading approaches within OpenMP that may better mitigate
the dynamic/variable parallel challenges in AMR MG codes like ExaCT’s (Combustion

7

X-TUNE: Progress Report - Year 1

0

0.5

1

1.5

2

2.5

3

3.5

64^3 32^3

se
co

n
d

s

Box Size

smooth_naive_fused

smooth_scalar_temp (manual)

wavefront

baseline (no fusion, 1 deep ghost
zone)

Figure 2.1: Performance results for optimizing smooth operation.

Co-Design Center’s) Low-Mach Code (LMC). If different architectures require different
approaches to parallelism, we hope to discover which works best and encode it in the
compiler. Additionally, we have passed this code to members in DEGAS who are in-
terested in quickly evaluating Habanero C’s ”async” construct in the context of MG
without having to rewrite a 100K-line fortran (+700K lines of C++) code like LMC.

2.3 Optimizing Nekbone

Nekbone solves a Poisson Equation using conjugate gradient (CG) iteration with no
preconditioner, and is a compact application representing nek5000, which is part of
the CESAR Co-Design Center. The focus of this work is to accelerate the batched
matrix-matrix multiplication that is performed in the CG and implement it on the GPU.
Basically, CG iterates over multiple matrices that are clustered and applies matrix-
matrix multiplication. To show how expensive this function is, Nekbone was profiled
with HPCToolkit. Even though this application uses a highly optimized Matrix-Matrix
Multiplication kernel, we found that 66% of the computational time is spent doing these
operations.

To accelerate the process, these matrix multiplications were moved to a GPU. The
idea is that the GPU batch all the matrices and perform the multiplication in one
count. Because the matrices are small (10x10), it is possible to pair each block of the
computational grid with each operation. This allows performing the multiplications in

8

X-TUNE: Progress Report - Year 1

(a) Original separate implementation.

M1 A M1 B M2 A M2 B Mn A Mn B

Block 1 Block 2 Block N

(b) Batched implementation.

Figure 2.2: Matrix Multiplication in Nekbone.

parallel.
The GPU functions (kernels) were generated using CUDA-CHiLL and run on a Tesla

C2050 (Fermi) GPU. Using CUDA-CHiLL makes it possible to apply different optimiza-
tions (e.g. unrolling and tiling) for performance improvement. In this case, no loop was
unrolled but the reused data was placed in the device shared memory. Finally, asyn-
chronous calls were used to hide latency of data copy, and at the same time the kernels
use concurrent launch to reduce wait time between them.

The preliminary results show that, for the test case, it is possible to achieve a 1.97x
speedup using the GPU. The next step of this problem is to identify other parts in the
code that share the same properties. Once these functions are identified, we are going
to apply a similar strategy in order to achieve higher performance.

2.4 Optimizing NWChem

NWChem is a computational chemistry software suite that includes a wide variety of
functionality, including molecular dynamics, density-functional and wavefunction meth-
ods. The focus of our effort is the optimization of the coupled-cluster methods in the
Tensor Contraction Engine (TCE) module of NWChem, as this is one of the most widely
used modules as well as the one most frequently run at large-scale on supercomputers,
as coupled-cluster methods are both floating-point and memory intensive methods. The
kernels of coupled-cluster theory fall into three basic categories: (1) dense matrix mul-
tiplication operations performed by BLAS (i.e. DGEMM), (2) multidimensional array
permutation operations, and (3) loop-based multidimensional array contractions. We
focus on 3, since 1 is already available in vendor- or expert-optimized libraries and 2
are bandwidth-limited, meaning that there is little opportunity to make them run faster
via tuning. The kernels in 3 are sometimes obtained by fusing 1 and 2, which has the
disadvantage of not using optimized BLAS but the advantage of an overall reduction
in memory traffic. If 3 can be optimized to be as efficient as DGEMM, the overall
performance benefit will be substantial.

9

X-TUNE: Progress Report - Year 1

While there are more than 100 different types of tensor contraction kernels present in
the TCE module, we focus on the ones associated with the perturbative triples correc-
tions used in the widely used CCSD(T) method. These kernels were profiled and found
to consume approximately 90% of the total time for CCSD(T) calculation, at least at
workstation scale (they will still be dominant on hundreds of thousands of cores since
they are the leading order floating-point cost). These kernels were factorized out of
NWChem and a standalone driver was developed.

Preliminary experiments with the CCSD(T) kernels have focused on OpenMP (none of
the TCE codes use threads except via BLAS) and compiler-based vectorization on Intel
Sandy Bridge (AVX) and Intel Knights Corner (KNC) architectures. The hand-tuned
kernels will serve as a reference point to which the autotuned kernels can be compared.

In Figure 2.3 we see that the thread-scaling of kernels is quite good with straight-
forward use of OpenMP directives using the Intel 13 compiler. However, the absolute
performance of these kernels is lower than what it should be, since these tensor con-
traction kernels have some of the characteristics of DGEMM and thus should run at a
significant fraction of peak when cache optimizations are performed. The current peak
performance corresponding to the figure data is 32.5%, 18.15% and 13.37% of usable
peak on Intel Westmere (SSE), Sandy Bridge (AVX) and Knights Corner processors.
Usable peak performance is determined with a DGEMM call for m = n = k = 3200 and
α = β = 1.0. Optimizing for memory locality and cache reuse is far more architecture-
specific than threading, hence it is more programmer-intensive to do by hand. Clearly,
automated methods for exploring this design space will be essential to realizing the full
potential of modern architectures such as Intel Sandy Bridge and Knights Corner.

10

X-TUNE: Progress Report - Year 1

Figure 2.3: Thread-scaling of the NWChem TCE kernel sd t d1 6 with tilesize=24.

11

3 Plans

Overall, the plan for X-TUNE is to continue the approach of the first six months. When-
ever possible, we will leverage existing manually-tuned code, or work with an expert
developer. In this way, we ensure that the optimization strategies built into our tools
closely approximate the state of the art for current and future architectures. We will
work towards automation of these techniques. Already we are developing new optimiza-
tions not currently exploited by the compiler community as an outgrowth of working
with expert programmers. A nice feature of autotuning technology is that it permits
exploration of multiple distinct optimization strategies, which means that we can incor-
porate a collection of different approaches to find the best optimization result. As the
technology matures, we will put our tools in the hands of users to explore how to best
meet users’ needs.

12

