Fault Oblivious Extreme Scale
Execution Environment (FOX)

n

LLNL: Maya Gokhale, Roger Pearce, Scott Lloyd

. SNL: John Floren, Jeremy Wilke
PNNL: Sriram Krishnamoorthy, Andres Marquez

FOX Team IBM: Evan Speight BOSTON
UNIVERSITY

%/Boston University: Jonathan Appavoo, Dan Schatzberg

Pacifdg ,cﬁ‘i‘ﬂ'lé’éﬁﬁ'ém Ohio State: Saday Sadayappan bﬁld

Proudly Operated by Battelle Since 1965
Bell Labs: Noah Evans, Jim McKie UNIVERSITY

Alumni:
Ron Minnich & Curt Janssen, Google
Eric Van Hensbergen, ARM
Jimi Xenidis, Qualcom

<||I|

Outline

= OSinnovations
— Many core
— Bare metal application execution
— Support for large memory
— Considerations for legacy
= Task oriented programming models
— Reliable data substrate
— Alternative models
= Graph application framework

— Asynchronous, massively concurrent
— Transparent access to memory hierarchy encompassing DRAM/NVRAM

Exascale Pl Meeting: FOX

NxM OS for multi-core

Build an operating system specifically for new
heterogeneous manycore CPUs in future exascale

= Standard Timesharing Cores (TC): a common core running

systems
User User User
Cores now have roles ' > '

kernel and user code in a time sharing fashion Core KC

)

AC
= Dedicated application cores (AC): a core running user | Traditional scheme | | NIX scheme
code without any interrupts (even without clock
interrupts) Bell Labs, Sandia
= Kernel cores (KC): a core that only runs kernel code on 1063
demand

= Cores communicate by sending active messages that
include a function to be executed and its arguments

= Programs transparently change roles by switching cores

Two page sizes: 2MB and 1GB

= 64GB - 63 1GB pages and 512 2MB pages instead of 16M
4K pages

) Lod | wARURCRE IR Rbd REN o ol bR ARRRRMIRRQNERIRTLLE (ARl DA MANAL b RANa B LINT ERLALANL &b DRARhbD R0l o Wil LA Rtk MR A TRR

Worlk Per Quanta

Emulates many Linux system calls

= App can use both NxM and Linux system calls

Demonstrated miniFE performance equal to native h‘[‘xz —
Linux NIX TC ——
NIX AC ——

Demonstrated iSCSI user level driver Time
IBM Research
Global Collaboration: Bell Labs, Sandia CA, Rey Juan Carlos U., Google

Website: http://nxm.coreboot.org/NxM
Source code: http://nxm.coreboot.org/Get_NxM 3

Kittyhawk BG/P infrastructure

Enables dynamic heterogeneous EE@ ’ ’

computing on BlueGene Systems

* Applications can be composed of arbitrary v
{ ue Gene
mixes of compute nodes running diverse 0 I 10 Noces
software stacks \

10G Ethernet
External Connectivity

Compute

o
\ (6x3.4Gbls) | Control Network
Nodes ‘

- Secure partitioning

 Allow compute nodes to run application
specific system software down to the
granularity of individual nodes.

— and management
: - Monitoring and
| / ‘ ‘ debugging

* Application can run in a customized

environment with specific OS, OS rev.,

libraries F
* Nodes can be dynamically allocated and

de-allocated F
* Modified kernels make it possible to

simulate node level faults F

* Convenient environment for exploring
alternative system software and

configurations
Jonathan Appavoo, BU \) ﬂ ﬂ

Boston University
Website: http://kittyhawk.bu.edu/kittyhawk/Kittyhawk.html
Source code: http://git.anl-external.org/kittyhawk/

Scalable and Elastic System Software for FOX

Explore how to support scale and

and elasticity in system software

* Assumes dynamic heterogeneous
environment where nodes can come and go

* Software can be composed of mix of
commodity and custom code

* Support the development of new libraries of
“Elastic building block” software that
encapsulates function such as hash tables
that are customized for specific application
access patterns and underlying hardware
communication facilities

* Facilitate incremental development by
providing both “bare-metal” execution and
traditional OS integration

* Targetis a focused trial of the ideas in the
context of an alternative implementation of
a FOX project key-value store application.

Jonathan Appavoo, BU

System Software

designed to support BN BN BN EY
Elastic High
Performance Software

Elastic Building Block DHT (Ebb-DHT)

Alternative Implementation of FOX Key-Value App

Task-oriented programming libraries

P [LTZ] UT, « factor [A2’0’0]
. . Ly A1
Libraries support

. : Al A
* Lightweight tasks [A’i?g] — P [Az‘l’g]
* Asynchronous task model Uso < solve LTyl o = Al N
* Data dependence among tasks Asoo — Ay y — LaoUzg ,'"//w’
* One-sided communication ,«' ll

"ll
'-‘M
Puid]

* Varying duration computational
tasks: load balance challenge
* Underlying reliable data store

Work queue in K-V store

7
Vserver OO o
Value — — 6
Q1.1 task_1 . > > 10°
Q1.2 | task_2 : .
task_3 . . - 105 L
\\ ® NodeY | L/ Nodez 2 1t
o 10°
queue set (“Q1”, task);)
p - 10° F
[]
e A\ ” - 101 F
queue _get (“Ql”, &task); Wi
10° 5 " 3 2 ‘ 1_M 0 1
Node X 10 10° 10 10 10 10 10

Seconds 6

Reliable data store

e Approach 1 (conservative): local persistent memory
for checkpoints
e Approach 2: Global Arrays + MPI: task model within
a major iteration step of the simulation
* Peer to peer, load balance with work stealing
* Approach 3: Reliable key/value store to hold task
gueues and possibly data
* Hierarchical — client/server
* Approach 4: fault tolerant tuple space

Exascale Pl Meeting: FOX

Approach 1: Checkpoint in NVRAM

* Aslight twist to checkpointing
* Maintain a persistent heap in local NVRAM

* Mmap a file to back the heap

* Mark global checkpoint data in source program with attribute PERM

* Allocate dynamic checkpoint data with perm allocator

* Allocates in the persistent heap

 Perm library msyncs file to do a checkpoint

* To restore a checkpoint, mmap file back in at previous virtual address
* Integrated into a couple of codes

* LULESH, ParaDys, LAMPPS

struct Domain *domain = pinit ? (pdom = PERM_NEW(Domain)) : pdom ;

if (pinit) domain->e = PERM_NEW(Real_t[domElems]); /* energy */
if (pinit) domain->p = PERM_NEW/(Real_t[domElems]); /* pressure */

/* Persistent memory initialization */
perm(&pdom, sizeof(pdom));
mopen(mpath, "w+", MMAP_SIZE);
free(mpath);

PermRestart(&pinit);

Exascale Pl Meeting: FOX Daniel Wong, USC 8
Scott Lloyd & Maya Gokhale, LLNL

Percent Efficiency

Approach 2: Task-based Model with Global Arrays

1 00 g -------------------------- E"“l'v:'.:::-,;,
90 i Q“....-.N ""-'ZZ:E'.:::::::E:H'- """""""""""""""" @
80 TR
70 b O
60
50 B
*,
40 -
i Steal K-
20 SteaIRet E e
10 | PLB S
o L.PLBConv -4 , .
16k 32k 65k 163k

Number of Cores on Intrepid BG/P

Dynamic load balancing can smooth out
variations

Irregular computation
Faults

System noise

Energy constraints

Percent Efficiency

100
90
80
70
60
50
40
30
20
10

L Steal -
StealRet --f1-
- PLB O
) PLBconVI ------ A ------ L 1 1 1
4k 9k 19k 38k 76k 114k

Number of Cores on Hopper XE6

Distributed algorithm

* Retention based work stealing
* Stolen tasks are retained in next
iteration
* Profile-based load balancing

Scales well with these optimizations

Sriram Krishnamoorthy, PNNL
Saday Sadayappan, OSU

Approach 2: Fault tolerance

Markers count We have developed fault tolerance
s = . 2 a mechanisms for task parallel
computations employing work
T L] 2 B
| Pz e Ny stealing, without requiring
E —_ c frequent synchronizations,
Plis m . HH%HH c collective roll back, or message
22 m ;S 18 i :
P23 I s N logging. The completion of data
operations is tracked using
Data on Pf 1 1 1
S Unprocessed Task/data Tasks on live process markers to maintain a consistent
I Lost data Tasks on failed process data store.
B Markers already set O Markers not set

This information is used to accurately classify tasks as: (A) executed by a live process
with no data loss; (B) executed by a live process with data loss; (C) executed by a
failed process; (D) enqueued on a live process; or (E) enqueued on a failed process.
This classification is used to determine the tasks to be re-executed. We
demonstrated that the overheads (space and time) of the fault tolerance
mechanism are low, the cost incurred due to failures are small, and the overheads

decrease with per-process work at scale. Sriram Krishnamoorthy, PNNL
Saday Sadayappan, OSU

10

KB/Core

Approach 2: Tracing work stealing schedulers

45 | | T | | | | | | -
4 F 2000 Cores —— =
- 4000 Cores XXx1 -

3.5 F 8000 Cores EEXXZXA -

16000 Cores C——1
- 32000 Cores T—

<X
QXXX XX
L

X XXX

R0

3%
&

TS
%

T
. 3 I]
b [EET ;
C <X
o E P35
AQ-HF AQ-WF SCF-HF SCF-WF TCE-HF TCE-WF PG-HF

We have developed algorithms to trace async-finish programs scheduled using work-first
(WF) and help-first (HF) work stealing schedulers; The algorithms exploit the stealing
relationship to derive compact traces, shown above for AllQueens(AQ), SCF, TCE, and
pgraph (PG) benchmarks on OLCF Titan; these algorithms were then used to enable
retentive work stealing for recursive parallel programs and optimize data race detection for
async-finish programs.

Sriram Krishnamoorthy, PNNL

11

Approach 3: task queues in key-value store

Adapted reliable, distributed key-value
developed in commercial sector to HPC to hold
distributed work queues

Current version uses Memcached from
Couchbase or Kyoto Tycoon
— No MPI!
— Fault handling server
Developed prototype application programming
interface (API) called libfox
— Represent work in key-value store paradigm
— Broadcast parameter set to workers
— Distribute tasks to workers
— Collect results from distributed data store
Task queue performance on 2K cores
— Queue set: 626 usec
— Queue get: 450 usec
Demonstrated on LLNL Hyperion cluster
— (2K cores) -
— task parallel benchmark
— Linear scaling tails off due to global operations

Work queue in K-V store

queue get (“Ql”, &task

Node X

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

11111

queue_set (“Ql1”,

task) ;

)

111111

11111

ccccc

Scott Lloyd, LLNL

Key/value store is being implemented on
BG/P to support global ID name space for

Elastic building blocks by BU

12

Algorithm for System Provided Strongly-Consistent
Namespace

Scalable Primary Order Broadcast

Replicas
Primary Reorganizes
in response
to failures

Listeners \\x

Updates of data is ordered by the Primary

Replicas ensure failure of Primary can be tolerated

Functioning Listeners are guaranteed to observe data updates in order

All reads are local — High Performance

Writes go through the Primary and have logarithmic latency

Structure is a self-organizing overlay that can be efficiently mapped to hardware topologies
Listener failure does not delay global progress

13

Approach 4: Tuple spaces ... in progress

Jeremy Wilke, Sandia CA

I. Influenced by Linda, Concurrent Collections (CnC), Charm++, DaGuE.

Il. Resilience by ensuring tuple space put/get actions are fault-tolerant transactions.

lll. Tuple transactions must be “staged” or “mirrored” to some temporary area in
case of failure

IV. All functionality is built on top of tuple space transactions. Resilience strategy can
maintain narrow focus on (relatively) simple abstraction of tuple space.

What’s different from other tuple space methods?

Hybrid of Linda/CnC. Tasks can be requested as
wildcard tuple Task(0,int?,int?) with actuals
(specific value) and formals (any value)
{A,0,0} Formals give flexibility. Workers don’t have to run
{B,0,1} specific task (decoupled in space and time)
Actuals can give hints to runtime about locality
(which node should probably run a task)
ARBITRARY event handlers/listeners can be
attached to tuple puts/gets

{C,0,2}

Parallel graph traversal framework

= High visibility data intensive supercomputing application class
= Traverse scale free graph with trillions of edges
— Social network, web

= Developed parallel, latency tolerant asynchronous traversal framework

= Scalable: single server with NVRAM to data intensive cluster to BG/P

= Uses visitor abstraction

— Visitor is an application-specific kernel that the framework applies to each graph
vertex

— Visit results in traversal of graph edges to queue work on target vertices
— Visitor is queued to the vertex using priority queue

= Demonstrated with
— Breadth first search
— Single source shortest path
— (Strongly) Connected components
— Triangle counting

— K-th core
"= Multiple Graph500 submissions Roger Pearce, LLNL & TAMU
= Code is being open sourced Maya Gokhale, LLNL

Nancy Amato, TAMU

Exascale Pl Meeting: FOX 15

Graph scaling results

Time (seconds)

0.5

Weak Scaling KCore on BG/P - RMAT

—eo— k = 64 kcore
—a— k = 16 kcore
| | —e— k = 4 kcore

512 1,024

Number of processing cores

|
2,048

GTEPS

|
4,096

g 100
»n
b=l
Q
&
@2
Q
on
k]
m
e
Q
w2
=
[}
>
g
=
s 10
@
=]
=}
.—
=
.-
3

Weak Scaling Triangle Counting on BG/P — Small World
700 T T T T

.//./0’40
600 - a

g 500 - |—e— Rewire = 0% 5
bt —e— Rewire = 10%
> Rewire = 20%
g g0 | ° 1
E —o— Rewire = 30%
o ———¢ 9
0 &———8—8¢ 8
200

| | | |
512 1,024 2,048 4,096

Number of Cores

Weak scaling of Async BFS on BG/P Intrepid

—e— Distributed Delegates
—m— Edge List Partitioning [8]
[] Graph500 June’12 [6]

|
8,192

| |
32,768 131,072

Number of Cores

16

Conclusions, credits

Fox advanced new concepts in core specialized OS

* NxM
* Supported IBM FusedOS
* Kittyhawk

* Elastic Building Blocks

* We developed task libraries designed for irregular, dynamic parallelism that would
be resilient in the presence of node failure

* Global Array based Tascel
¢ K/V store based libfox
* Tuple space library in progress

 We developed latency tolerant framework for graph traversal
* Thanks to ALCF INCITE program, NERSC, OLCF, LLNL

* Code
* http://nxm.coreboot.org/Get NxM
e http://git.anl-external.org/kittyhawk

* https://computation.linl.gov/casc/dcca-pub/dcca/Downloads_files/perm-je-latest.tar.gz

17

Papers

Jan Stoess, Udo Steinberg, Volkmar Uhlig, Jonathan Appavoo, Amos Waterland, Jens Kehne, Kittyhawk. A
lightweight virtual machine monitor for Blue Gene/P, International Journal of High Performance
Computing Applications, March 27, 2012

Francisco J. Ballesteros, Noah Evans, Charles Forsyth, Gorka Guardiola, Jim McKie, Ron Minnich, Enrique
Soriano-Salvador, NIX: a case for a manycore system for cloud computing, Bell Labs Technical Journal,
2012

J. Lifflander, S. Krishnamoorthy, and L. V. Kale, “Work stealing and persistence-based load balancers for
iterative overdecomposed applications,” in Proceedings of the 21st international symposium on High-
Performance Parallel and Distributed Computing, pp. 137-148, ACM, 2012.

J. Daily, S. Krishnamoorthy, and A. Kalyanaraman, “Towards scalable optimal sequence homology de-

tection,” in Workshop on Parallel Algorithms and Software for Analysis of Massive Graphs (ParGraph),
2012.

J. Lifflander, S. Krishnamoorthy, and L. V. Kale, “Steal tree: Low-overhead tracing of work stealing
schedulers,” in PLDI, ACM, 2013.

H. Arafat, J. Dinan, S. Krishnamoorthy, P. Balaji, , and P. Sadayappan, “Work stealing for GPU- accelerated
parallel programs in a global address space framework,” Concurrency and Computation: Practice and
Experience special issue on "Productive Programming Models for Exascale” (under submission), 2013.

W. Ma and S. Krishnamoorthy, “Data-driven fault tolerance for work stealing computations,” in
Proceedings of the 26th ACM international conference on Supercomputing, pp. 79-90, ACM, 2012.

Roger Pearce, Maya Gokhale, Nancy M. Amato, “Scaling Techniques for Massive Scale-Free Graphs in
Distributed (External) Memory, IPDPS 2013.

Exascale Pl Meeting: FOX 18

