

 1 of 23

Milestone 9 Status Report

Award #: DE-SC0008717
Recipient: Intel Federal LLC
Project Title: TRALEIKA GLACIER X-STACK
PI: Shekhar Borkar
Report Date: December 8, 2014
Period Covered by Report: September 1, 2014 to November 30, 2014

Acknowledgment: This material is based upon work supported by the Department of Energy [Office of

Science] under Award Number DE-SC0008717.

Disclaimer: This report was prepared as an account of work sponsored by an agency of the United States

Government. Neither the United States Government nor any agency thereof, nor any of their

employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for

the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed,

or represents that its use would not infringe privately owned rights. Reference herein to any specific

commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does

not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States

Government or any agency thereof. The views and opinions of authors expressed herein do not

necessarily state or reflect those of the United States Government or any agency thereof.

 2 of 23

Contents
Executive Summary ... 3

Intel ... 4

Reservoir Labs (Richard Lethin) .. 7

Rice University (Vivek Sarkar) ... 10

UCSD (Laura Carrington) ... 11

University of Illinois Urbana Campus (David Padua) .. 13

University of Illinois Urbana Campus (Josep Torrellas)... 14

Pacific Northwest National Laboratory (John Feo) ... 21

 3 of 23

Executive Summary
Open Community Runtime project made significant progress; it runs on all targeted platforms:

distributed memory with MPI (or GasNet) implementation, as well as multi-block FSim implementation

targeting TG architecture, and successfully tested for up to 256 XE’s (Execution Engines), showing good

scalability. We have established a roadmap for OCR for the remainder of the TG project.

Several DOE applications are now coded in CnC (Concurrent collections). LULESH coded in CnC works on

FSIM, HPGMG is under development, CoMD runs on several x86 targets, and several others, such as

CoHMM, AMR, MD are being coded using CnC. We have also started to develop an early prototype to

demonstrate interoperability between CnC and HTA (Hierarchical Tiled Arrays). R-Stream optimizer, with

enhanced OCR data-block support, demonstrates performance and productivity benefits by

automatically producing efficient OCR code for HPGMG kernels (starting from few lines of C code) that

gives comparable or better performance than OpenMP.

We completed development and testing of multiple versions of CoMD, with two different algorithms,

each programed using MPI, MPI+OpenMP, OpenMP, MPI+PThreads, PThread, and OCR. The results were

presented at TG technical meetings, SC14 BOF, and at the Co-HPC workshop (Codesign in HPC, held at

SC14).

The architecture group has started evaluation of the TG system architecture with OCR and software-

managed (incoherent) caches. Results show that with carefully orchestrated data movement, incoherent

caches within a cluster provide about the same system performance as with hardware managed

coherent caches. We plan to confirm these results using FSim.

For community outreach, we are working with the X-Stack PIs on design and development of a unified

open community runtime and APIs that takes the best parts of their collective runtime research

including OCR, HPX and combines them with mature environments like Charm++, OpenMP and MPI to

offer portability, interoperability and legacy support. Following successful program with Oregon State

University (OSU), we have started 3 new projects with undergraduate students from OSU related to

OCR.

TG held a 3-day application workshop during the first week in October. We structured this workshop to

be “hands-on” and used the last day to jointly code with our DOE colleagues on the proxy applications.

And this quarter we held the 6th annual CnC workshop with excellent participation.

 4 of 23

1 11/30/12 Architecture V2 spec & preliminary apps kernal identified for evaluation Intel

2 3/1/13 Simulators V2 functional, tools (C + binutils) in place, IRR V1 identified ETI, Reservoir

3 5/31/13 Selected kernels evaluated for 0(compute) Intel, PNNL

4 8/30/13 Basic timing in simulator, intelligent scheduling in Exec model, tools (LLVM, etc) ETI, Rice, Reservoir

5 11/27/13 Selected kernels evaluated for 0(com), select apps coded with PGM system for IRR UCSD, PNNL

6 2/28/14 Architecture V2.5 spec, system evaluation of V2.0 Intel, UIUC (Josep)

7 5/30/14 Simulators V2.5 functional, tools for V2.5 released ETI, Reservoir

8 8/29/14 System evaluation of V2.5 UIUC (Josep)

9 11/26/14 Arch V3.0 spec (ISA 4.1.0), selected apps evaluation with execution model and
programming system for V2.5

Intel (with all)

10 2/27/15 Simulators V3.0 functional, tools for V3.0 released Intel, Reservoir

11 5/29/15 Release OCR (Open Collaboration Runtime) V1.0 Rice

12 8/28/15 Evaluation of all X-Stack technologies and report Intel

Intel

FSIM and OCR (Romain Cledat)

Introduction

 During this quarter, Intel worked on the following areas:

 Following successes in similar projects last year with Oregon State University (OSU), Intel started

3 new projects with undergraduate students from OSU related to OCR. We will be working to a)

develop an interactive web-based tutorial for OCR b) improve on and evaluate methodologies to

identify performance bottlenecks in OCR particularly at scale, and c) port OCR to the Xeon Phi

platform.

 OCR now runs correctly on all targeted platforms. Rice contributed the MPI implementation and

Intel was responsible for developing the multi-block FSim implementation. The FSim

implementation has been successfully tested for up to 32 blocks (256 XEs). We will improve

performance for these implementations in the following quarters.

 The third Application Workshop was hosted at Intel with participation from our DOE partners.

An initial draft of the OCR specification was released at that meeting.

 The specification for the v3 of the architecture was finalized. It includes new op codes for

operations identified as common for DOE applications and features a 64 bit ISA. A whole new

tool chain is being developed for this new architecture; we currently have the assembler and

compiler and a port of libc is in the works. The simulator is also being updated for this new

architecture.

 Several issues with OCR were fixed. The roadmap for OCR was also laid out internally.

Details of these points can be found in the ‘Accomplishments’ section directly below.

Accomplishments

OCR on FSim is now functional and has been tested with up to 32 blocks. We have identified several

implementation issues that affect performance and will be tackling them in the next quarters.

 5 of 23

Now that we have basic support for OCR on all our targeted platforms (x86, simulated TG on x86, TG and

clusters), we also finalized and presented to our partners a simplified method to build and run codes

written in OCR. This approach was demonstrated during our third Application Workshop with

applications from DOE. Several issues were identified during the workshop and have since been fixed.

Based on feedback received during the workshop, a roadmap for OCR development for the remainder of

the X-Stack project has been established. We intend to freeze most features by the end of 2014 and

focus on implementation and performance optimizations in 2015. Our current focus is revamping the

scheduler implementation, improving memory allocation (in particular on the TG platform) and adding

programmer hints (in collaboration with Rice). A few additional API features will also be implemented

based on requests from application developers.

Development for the simulator has been brought in house and we are actively working on finalizing the

modifications required for v3 of the architecture. Most op codes were previously implemented by ETI

and work has focused on implementing some of the newer features like queue and memory engines.

Significant work has also gone in properly defining the memory map.

Plans

For the next milestone, we plan to:

 Freeze OCR features and start focusing on performance improvements.

 Wrap up development on the v3 tool chain and simulator.

 Evaluate applications using v3 of the architecture. OCR will also be “ported” to this new

architecture to make use of some of new features (particularly queue and memory engines).

 Host another application workshop at the end of February.

Issues

None.

Applications (Bill Feiereisen)

Introduction

We introduced a unified build architecture for all the applications and kernels into the Traleika Glacier

repository. This repository will contain all versions of all of the proxy applications and kernels in a

uniform build procedure. It will also contain the scripts and datasets for running all the versions. We

used this repository to hold the third Applications Workshop with our DOE colleagues in early October.

Accomplishments

Application Repository: This repository structure now allows us to run regular app regression tests upon

the Traleika Glacier software and hardware infrastructure, providing a powerful tool for co-development

of the architecture, the simulator and the OCR runtime.

Our goal is to provide this repository fully populated to the DOE for assessment and for use as teaching

examples for refactoring codes in the high level programming notations. In preparation for our recent

Applications Workshop we implemented the entire set of kernels in the build format and as of this

 6 of 23

writing we now have one of the full proxy applications CoMD. The additional proxy applications in a

selection of the programming notations are in work and will populate the repository in the next quarter.

Applications Workshop: We held the third Traleika Glacier 3-day Workshop during the first week in

October. We structured this workshop to be “hands-on” and used the last day to jointly code with our

DOE colleagues on the proxy applications. The software tool suite supporting these applications was

implemented and proved sufficiently robust. In addition we invited our DOE colleagues to “bring their

own codes” and we were able to support the partial refactoring into CnC on the Thursday of the

workshop. This format proved very useful to our DOE colleagues and to our developments on the

Traleika Glacier team. We received very favorable feedback from our Lab colleagues and from Intel

management – a group achievement award was granted. We will follow this format for the next

workshop in February.

Plans

During Q1-2015 we will fully populate the applications repository with the initial versions of all of the

proxy applications, including the original versions for comparison. And we will expand the

implementations of the proxies beyond the current OCR and CnC OCR versions.

Issues

None.

Community Development and Coordination (Wilf Pinfold)

Introduction

Intel is working with the X-Stack PIs on design and development of a unified open community runtime

and API that takes the best parts of their collective runtime research including OCR, HPX and combines

them with mature environments like Charm++, OpenMP and MPI to offer portability, interoperability

and legacy support. We are exploring ways this unified runtime can be developed and maintained by the

community through an independent foundation and how we can provide disciplined release engineering

and continuous integration support in a way that allows vendors and software developers to collaborate

without limiting innovation.

Accomplishments

Programming Environments Document: Started work on a document that will articulate how the

technologies in the XPRESS project will integrate with DEGAS, D-TEC, and Traleika Glacier and the other

X-Stack programs.

Runtime System Report: Put tools in place to enable team development of a document based on the

April runtime summit that outlined a roadmap for achieving a unified runtime systems architecture for

Exascale systems.

PI meetings: We have had monthly phone meetings between X-Stack PIs to coordinate research and a

face to face meeting at SC14 where we discussed the context for exascale hardware changes and the

comparative analysis of parallel environments.

 7 of 23

Plans

 Interim Programming Environments Document target date: December 19, 2014

 Runtime System Report target date: January 30th 2015

 Runtime Systems Workshop: March 11-13, 2015

Issues

None.

Inventions
None.

Publications
None.

Reservoir Labs (Richard Lethin)

Introduction
This research memo describes the contributions of the Reservoir Labs X-Stack team during the period of

September 15, 2014 through December 15, 2014. A summary of our contributions during this period

includes:

 Demonstration of performance and productivity benefits of R-Stream by automatically

producing efficient OCR code for HPGMG kernels (starting from few lines of C code) that gives

comparable or better performance than OpenMP;

 Continued support for low-level tools (LLVM and binutils) for 32-bit and 64-bit versions of the

Traleika Glacier (TG) ISA;

 Enhanced OCR datablocks support in R-Stream;

 Making the R-Stream generated HPGMG OCR code available to the TG team members through

the Traleika Glacier X-Stack git repository. This is the only existing OCR code for HPGMG kernels.

Accomplishments

This section details our contributions during this reporting period.

LLVM and Binutils for TG ISA

We worked on an LLVM bug -- the compiler does not output debug information sections even when
invoked with the debug flag (-g). The fix for the bug required changes in the LLVM compiler to enable
generation of debug information and also in the assembler as it has to process additional information
that it receives from the compiler.

We developed a fix to output debug information from the compiler by programmatically turning on a
certain flag in the compiler and also re-writing a certain portion of the pretty printer to output 8 byte
labels (as opposed to 2- or 4-byte labels, which was the default behavior).

 8 of 23

The assembler (a part of binutils) was also updated to enhance relocation support which was
necessitated by the debug information laden compiler output.

Datablocks Support in R-Stream

We worked on extending the OCR datablocks support in R-Stream. The existing capability in R-Stream
creates one large datablock for each array and then creates smaller datablocks within EDTs that fit in the
local scratchpad (for e.g. XE scratchpad in TG architecture) based on the data accessed within an EDT.

The new capability takes in a data partitioning (aka data tiling) specification from the user and creates
initial datablocks according to the specification. R-Stream automatically figures out the datablocks that
each EDT needs and creates an input slot for each datablock. Within an EDT, the data needed by the EDT
from each of its input datablocks is automatically copied on to temporary local arrays that collectively fit
in the local scratchpad attached to the processing element. This capability eliminates the need to create
one large datablock for each array and provides a pathway to achieve scalable performance.

HPGMG Study, Analysis, and Mapping

Reservoir Labs investigated configurations with one of the HPGMG authors, and found that modern
GMG solvers can best be proxied with the finite volume code configured with V-cycles, a biconjugate
gradient stabilized (BiCgStab) bottom solver and Gauss-Seidel Red-Black (GSRB) smoothers operating at
each level of the multigrid code. Future “exascale” GMG solvers are best proxied with finite volume
code configured with full multigrid F-cycles, a BiCgStab bottom solver, and Chebyshev smoothers at each
level.

Identification of Performance Critical Sections

Examination of HPGMG profiling data showed that performance critical sections include smoother,
restriction, interpolation, and ghost zone exchange. Smoother was identified as a bottleneck and
examined in more depth. Existing hierarchical parallelism was identified. Coarse grain parallelism was
identified at the MPI layer where the problem domain was equally divided amongst ranks. Fine grain
parallelism was identified where subsets of the per-rank set were assigned to individual OpenMP
threads. The finest grain parallelism was found inside each box where subsets of the box were assigned
to be computed by individual OpenMP threads.

For our initial experiments, we chose to map and optimize the finest grain parallel region. In future, we
will be expanding the scope of R-Stream optimizations to include more coarse-grained parallel regions.
Further, we will be also enabling broader fusion of smoother, restriction, residual computation,
interpolation, and ghost zone exchange in different levels of the multigrid solve.

R-Stream Optimization

After identifying the smoother as a bottleneck area, the GSRB and Chebyshev smoothers were modified
to enable automatic parallelization and optimization, and OCR code generation by the R-Stream
compiler. As mentioned earlier, we mapped the finest grain parallel region and produced OCR code for
it. The R-Stream generated OCR code was compared against the OpenMP code for the finest grain
parallel region. Initial results showed that OCR performance is better than or comparable to the
OpenMP performance.

These parallelized OCR versions have been code reviewed, committed to the X-Stack git repository, and
successfully built on the X-Stack cluster. Preliminary performance data was presented at the most recent
Traleika Glacier Applications Workshop at Intel’s Hillsboro facilities.

 9 of 23

CnC Collaboration

Reservoir has been collaborating with the CnC team at Intel/Rice and the PNNL team. A guide to building
and running HPGMG was presented and subsequent collaborations have detailed a plan to enable the
use of R-Stream optimized portions of HPGMG as CnC steps. Reservoir has been working with PNNL to
define software interfaces between CnC steps and R-Stream optimized components of HPGMG including
smoothers, restriction, residual computation, and interpolation operations.

SDSC Collaboration
An initial meeting with Laura Carrington’s group at the San Diego Supercomputing Center has been set
up to discuss HPGMG development.

Intel Collaboration
Reservoir Labs has been providing guidance to Gabriele Jost from Intel Corporation as she ramps up on
the project. We have assisted with configuration, build, problem sizing, and environment setup.

Plans

For the next milestone, we currently have the following key ongoing tasks:

● Support LLVM and binutils for TG ISA;

● Extend the scope of R-Stream optimizations for HPGMG, specifically, enable broader cross

kernel fusion and map more coarse-grained parallel regions in different levels of the multigrid

solve;

● Enhance performance-scalable optimizations in R-Stream-OCR code generation.

Issues

None.

Inventions

None.

Publications

None.

Conclusion

During this quarter, we demonstrated the capability of R-Stream to automatically generate efficient OCR

code for performance critical sections in the HPGMG benchmark. R-Stream takes few lines of (HPGMG)

C code as input and produces efficient OCR code that gives comparable or better performance than

OpenMP; this highlights the performance and productivity benefits that R-Stream offers to the exascale

software stack. R-Stream generated OCR code is the only existing OCR code for HPGMG kernels and was

made available to all TG team members through the X-stack git repository. Further, we continued

development and maintenance of LLVM and binutils tools to support the 32-bit and 64-bit TG ISA.

Furthermore, we made progress in extending the high-level compiler optimizations for TG through R-

 10 of 23

Stream. Specifically, we developed capability in R-Stream for automatic creation and management of

datablocks within EDTs according to a user-specified partitioning of data.

Rice University (Vivek Sarkar)

Accomplishments
 Distributed OCR: We have completed the implementation of OCR that works on distributed

memory systems. This implementation can use MPI or GasNet for communication between

shared memory nodes. We have tested and verified this implementation, and in the process

discovered and fixed several correctness and performance bugs in OCR.

o OCR implementations of applications or kernels of interest to DOE:

 Conjugate Gradient

 CoMD

 LULESH

 FFT

 OCR hints: we have identified several classes of hints that the user can provide to the runtime in

order to achieve better performance and/or energy consumption. We have proposed several

API changes and additions to OCR that will allow these mechanisms.

 OCR power API: we began the addition and integration of power-related APIs to OCR that will

allow the OCR runtime to communicate with the underlying hardware power monitoring

mechanisms, and to react to user-specified policies and hints regarding power.

 This quarter we held CnC’14 (6th annual CnC workshop) Sept 18-19. Chairs: John Feo (PNNL)

and Sanjay Chatterjee (Intel) For details see: http://cass-mt.pnnl.gov/cnc2014/

 CnC implementations of applications of interest to DOE:

o LULESH – (With PNNL): Currently works on FSIM but there is an FSIM issue that

constrains the tile size of one element. See PNNL section for details.

o HPGMG – (With PNNL): The CnC domain spec is under development. See PNNL section

for details.

o COMD – (With USCD): COMD in CnC - runs on several x86 targets. See UCSD section for

more details

o There are other DOE applications that have been implemented in CnC outside of the X-

Stack project:

 COHMM – (With LANL)

 Adaptive Mesh Refinement – (With LANL)

 Molecular dynamics – (With LLNL and UCLA)

 Other CnC accomplishments (infrastructure, features and additional applications):

o Use of cancellation and priority mechanisms for convergence processing in Jacobi2d -

this combination of facilities supports convergence tests without barriers and has

potential for more general use.

o Gene Sequencing - Vrije Universiteit (Yves Vandriessche et al): Here CnC is being used to

coordinate among applications, not just within an application.

http://cass-mt.pnnl.gov/cnc2014/

 11 of 23

o Ray tracing in CnC - PNNL (Ellen Porter et al)

 OCR implementation of CnC: We have completed the implementation of CnC on top of OCR. This

implementation works on shared-memory OCR on x86, distributed-memory OCR using MPI or

GasNet for communication, and on FSIM implementation of OCR.

 Unified CnC: We have started the efforts of unifying the different front-end implementations of

CnC into a single CnC framework. This will allow programs written in CnC to execute on top of

different CnC implementations (CnC-OCR, CnC-HC, Intel’s CnC on C++, etc.) without any change

in the CnC graph specification.

 Integration of CnC and HTA (With UIUC): We are developing an early prototype to demonstrate

the interoperability of CnC and HTA. As a proof of concept, we code within CnC steps can invoke

operations implemented in HTA. CnC manages the coarse-grain asynchronous task-based

computation steps and HTA is responsible for the fine-grain data parallel computation within

each coarse-grain step. For more details see the UIUC section.

Plans
 Power APIs: identify and define OCR APIs that will allow power/energy tuning within the OCR

runtime

 Further performance and correctness improvements to the OCR implementations

 Integrated the Unified CnC approach into the X-Stack repositories

 Tuning for CnC on OCR

Issues
None.

Inventions
None.

Publications
None.

UCSD (Laura Carrington)

Proposed milestone

Work on experiments with CoMD on OCR-FSIM to explore energy and performance tradeoffs. Work on

porting CoMD to CNC/OCR to compare to the hand coded version.

Interpretation: 1) Describe preliminary trade-offs in CoMD design: propose metrics, apply metrics, show

quantitative results of metrics. 2) Work with Bill Feiereisen and DOE to identify Proxy App for next Q

milestone by end of this Q; provide a written statement of Proxy App to be used in next Q efforts.

 12 of 23

Issues and Limitations Encountered
The CnC version of CoMD is complete and we are still waiting on Nick Vivrlo to get a CnC->OCR-FSim

working. The issues are not well defined and are currently being investigated, but it appears a problem

in the translator. Without that version no experiments on the simulator can be performed.

There is currently a problem that prevents FSim to produce energy numbers (https://exascale-

tech.com/trac/ticket/252) and until that is solved we will not be able to compare different code

variants.

Progress
We completed development and testing of multiple versions of CoMD two different algorithms each

programed using MPI, MPI+OpenMP, OpenMP, MPI+PThreads, PThread, and OCR. Results have been

presented at TG technical meetings, SC14 BOF, and at the Co-HPC workshop (Codesign in HPC, held at

SC14)[1]. We completed a series of performance experiments to analyze the performance features and

bottlenecks of the different algorithms and programming environments. In addition we completed

experiments to highlight how current bulk synchronous programming models are not capable of

handling the anticipated dynamic environment of Exascale systems. This data was written up in a paper

submitted to Co-HPC a workshop on Co-Design for SC14. The paper was also sent to the ExMatEx team

and we have been in email discussion about the results.

We are experimenting with FSIM to define the methodology to measure performance and energy

consumption to compare different variants of CoMD.

Both CG and CoMD have been adapted and committed to the repository in the “apps” directory

according to the new format and are now integral part of the source tree. In addition, we contributed

several standard C header files and functions to enable porting of other apps to TG/FSIM.

We also contributed several versions of CoMD to the ExMatEx github repository.

Next steps
We will continue experimenting with CoMD on FSIM and compare different variants for their

performance and energy efficiency.

We are currently working on porting the HPGMG code to OCR. The data-flow below shows the different

phases of the full multi-grid solver with a Chebyshev’s smoother and BICGstab iterative solver (Figure 1).

We completed the basic structure of the graph and we are now adding the code of the various operators

and the iterative solver.

https://exascale-tech.com/trac/ticket/252
https://exascale-tech.com/trac/ticket/252

 13 of 23

Figure 1 - HPGMG data flow

Publications
[1] P. Cicotti, S. Mniszewski, and L. Carrington, "An Evaluation of Threaded Models for a Classical MD Proxy Application."

University of Illinois Urbana Campus (David Padua)

Accomplishments

SPMD Extensions to HTA

This quarter we completed our first task parallelism implementation for HTAs. We are currently using

this work to implement SPMD parallelism in HTAs to reduce synchronization overhead through the

reduction of barriers required by our previous fork/join data parallel model. Significant changes need to

be made to the HTA implementation to support SPMD parallelism, and these changes are underway.

Integration of CnC and HTA

We started to develop an early prototype to demonstrate the interoperability between CnC and HTA.

We worked out a way to invoke matrix-vector multiplication operation implemented in HTA (running on

OpenMP) within Cholesky factorization code written in CnC as a proof of concept. In this scenario, CnC

manages the coarse-grain data-driven parallel computation on tiled matrices and the HTA operation is

responsible for the fine-grain data parallel computation within each tile. The scenario provides

programmers an easier way to manipulate fine-grain parallelism and multi-level tiling.

 14 of 23

Graph Extensions for HTAs

Some graph algorithms can be written as linear algebra calculations, and linear algebra calculations have

been well-studied in previous HTA related work. We studied the recent work of Saeed Melaki et al.,

“Tiled Linear Algebra: A System for Parallel Graph Algorithms’’ (to appear in LCPC 2014), which proposed

a new notation – Tiled Linear Algebra (TLA) to express Single Source Shortest Path (SSSP) algorithms in

an elegant way. The TLA notation can be converted into HTA code easily and naturally.

One issue of TLA SSSP algorithms is the need of the global synchronizations, and a pipelined algorithm

was proposed to reduce global synchronizations in implementation on distributed memory machines.

We are investigating whether it is possible to utilize HTA implementation in SPMD execution mode to

minimize the need to synchronize and improve performance on shared memory machines.

Plans

Graph Extensions for HTAs

We plan to continue our work on the graph extensions for HTAs, including an implementation of the

SSSP algorithm previously mentioned. This implementation will take into account the optimizations we

have been studying.

HTA and CnC Integration

We will continue our effort of the integration of HTAs with CnC.

HTA Implementation Improvements

Next quarter we plan to complete the SPMD implementation for HTAs. We also plan to study any

chances of optimizations in the implementation of the HTA library as well as the generated OCR code.

Issues
We currently have no issues for this quarter.

Inventions
None.

Publications
None.

University of Illinois Urbana Campus (Josep Torrellas)

Accomplishments
In this quarter, Wooil Kim and Josep Torrellas accomplished two main things. We have initiated the

evaluation of the TG system with OCR and further evaluated Software-Managed (i.e., Incoherent)

caches. We describe each in turn.

 15 of 23

TG system with OCR

We have initiated the evaluation of the TG system (architecture and OCR runtime system) on the FSim

simulator. This effort continues the work we did in the last milestone, when we evaluated the TG

architecture with an earlier, non-OCR runtime system.

However, the FSim simulator does not yet completely support the OCR system. Consequently, we have

only been able to obtain limited results. We have been able to run a Cholesky matrix factorization

program and obtain performance numbers as we change the number of blocks and the matrix tile size.

Moreover, all memory allocation is done in the off-chip DRAM. Hence, remote memory accesses mostly

go to DRAM. We expect that, in the future, OCR will support memory allocation in the scratch-pad, BSM,

and USM.

Cholesky Program

Cholesky is a decomposition method of a positive, definite matrix into a product of a lower triangular

matrix and its conjugate transpose. The algorithm is iterative, and values produced in the previous

iteration are used in the current iteration. The algorithm has O(N^3) complexity because it iterates N

(the matrix size in one dimension) times for matrix elements (N x N). The simplified sequential algorithm

is written as follows:

for (k = 0; k < N; k++) {
 A[k][k] = sqrt(A[k][k]);
 for (j = k+1; j < N; j++) {
 A[j][k] = A[j][k] / A[k][k];
 for (i = k+1; i < N; i++) {
 A[i][j] = A[i][j] - A[i][k] * A[j][k];
 }
 }
}

The parallel version of Cholesky divides an entire input matrix into t x t tiles, where t (the number of tiles

in one dimension) is N (the matrix size in one dimension) divided by T (the tile size in one dimension). An

external program transforms an original matrix into a tiled lower triangular form, and the Cholesky

program starts from it. The breaking of the program into different tasks (called EDTs or Event-Driven

Tasks) was described in the previous milestone report.

All EDTs are created early on, but they wait until their dependences are resolved. The degree of

parallelism in Cholesky is affected by two main factors. The first one is the number of tiles. Given a fixed

problem size, more tiles with smaller tile size enable more parallelism. However, increasing the number

of tiles also increases the overhead. The second factor is related to the runtime. When there are many

EDTs that are ready to execute, the runtime picks one among them and assigns it to an idle XE. If the

runtime chooses an EDT with more dependent EDTs, the completion of the EDT increases the number of

executable EDTs. Overall, Cholesky shows a highly-variable degree of parallelism.

 16 of 23

Performance as We Change the Matrix Tile Size

Figure 2 shows the execution time (in billions of cycles) of Cholesky with matrix size 500 running on 2

blocks with 8 XEs each. We vary the tile size from 250 to 100, 50, and 25. As we decrease tile size, more

EDTs are generated, and more numbers of concurrent EDTs are available. Consequently, more

parallelism is exposed. We see speed-up as the number of EDTs increases. Hence, when the

programmer exposes more parallelism in the problem, the current runtime exploits it well.

Figure 2 - Execution time (in billions of cycles) of Cholesky for matrix 500 and varying tile size, for 2 blocks with 8 XEs each.

Performance as We Change the Number of Blocks

Figure 3 shows the execution time (in billions of cycles) of Cholesky with matrix size 500 for different tile

sizes and different number of blocks and XEs per block. We have three tile sizes: 100, 50, and 25. For

each, we run it on 1 block (8XEs), 2 blocks (16XEs), and 4 blocks (32XEs).

We can see that there are slowdown effects when we add more blocks. With the fixed size of the matrix

and the tile, increasing the number of blocks does not improve the performance but harms it. This might

be a synchronization issue in the multi-block simulation, or it might be due an inefficiency in the OCR.

0

1

2

3

4

5

6

7

tile 250 tile 100 tile 50 tile 25

B
ill

io
n

s

Execution time (cycles)

 17 of 23

Figure 3 - Execution time (in billions of cycles) of Cholesky for matrix 500, varying tile size and varying number of blocks used
(one, two or four blocks, of 8 XEs each).

Load Balance

In terms of number of instructions, loads and stores, the program is very load balanced. We run

Cholesky for matrix 500 and tile size 50. In Figure 4, the program runs one 1 block. The figure shows the

breakdown of instructions, remote reads and writes, and local reads and writes across the 8 XEs. In

Figure 5, the same program runs on 4 blocks. The figure shows the breakdown of instructions, remote

reads and writes, and local reads and writes across the 4 blocks. We can see that the system is well load-

balanced.

0

0.5

1

1.5

2

2.5

3

tile 100 tile 50 tile 25

B
ill

io
n

s

block 1

block 2

block 4

 18 of 23

Figure 4 - Breakdown of instructions, remote reads and writes, and local reads and writes, across the 8 XEs of a block.

Figure 5 - Breakdown of instructions, remote reads and writes, and local reads and writes, across the 4 blocks of a 4-block
run.

We expect to continue debugging the evaluation of the TG system.

Evaluation of Software Managed Caches (In Preparation for FSIM)

We have continued to evaluate the API for software managed caches (i.e., incoherent caches). Since the

FSIM support for this API is not fully debugged yet, we have created a simpler simulator that allows us to

perform an initial evaluation and get ready for when FSIM’s support is available.

0

10

20

30

40

50

60

70
X

E0

X
E1

X
E2

X
E3

X
E4

X
E5

X
E6

X
E7

M
ill

io
n

s

local reads

local writes

remote reads

remote writes

instructions

0

100

200

300

400

500

Block
0

Block
1

Block
2

Block
3

M
ill

io
n

s

local reads

local writes

remote reads

remote writes

instructions

 19 of 23

Recall that our ISA support to manage an incoherent cache hierarchy is based on writeback and self-

invalidation instructions. We studied the subtle issues that these instructions need to face, including

reordering in the pipeline, and effective use of caches organized in blocks for energy efficiency.

We took a set of applications from the SPLASH-2 benchmark suite, and developed a simple approach

that the programmer can use to orchestrate the movement of data. It is based on exploiting the

synchronization points in the program and the type of synchronization operations. Moreover, if the

programmer provides additional communication pattern information, we can improve the performance.

Figure 6 shows the annotations we use for communication patterns enabled by barriers (a), critical

sections (b), flags (c), and dynamic happens-before epoch orderings (d). In the figure, WB stands for

writeback and INV for self-invalidation instructions.

Figure 6 - Annotations for different communication patterns.

Our simulation results show that the execution of applications on incoherent cache hierarchies can

deliver reasonable performance. Figure 7 shows the normalized execution time of the parallel phase of

the applications with different levels of hardware support. For each application, and for the average, we

show 5 bars. Starting from the left, the first bar shows execution time for directory-based hardware

cache coherence, and all bars are normalized to this configuration.

The rest of the bars show: our baseline incoherent caches, and then three bars after applying various

combinations of our optimizations on the baseline incoherent caches. The last bar in each application is

the best optimization possible. Each bar is broken down into 5 categories: busy time plus memory access

stall (execution), stall due to barrier (barrier stall) and lock (lock stall) synchronization, and stall time due

to writeback (WB stall) and self-invalidation (INV stall).

 20 of 23

Figure 7 - Execution time of the applications.

From these figures, we show that, if we carefully orchestrate the data movement, the execution using

incoherent caches within a cluster is not much slower than using hardware cache coherence in these

applications. We look forward to being able to try these experiments on FSIM.

Issues
We need to work with the rest of the team members so that FSIM fully supports OCR for different

numbers of processors and allocating the data in the block memories. We also need to have the support

for incoherent caches fully debugged in FSim.

Plans for next milestone
Continue to evaluate the TG architecture on FSIM, focusing on having OCR fully implemented and

evaluated, and then evaluate incoherent caches in FSim.

Inventions
None.

Publications
Currently working on:

Title: Architecting and Programming an Incoherent Multiprocessor Cache Hierarchy
Authors: Wooil Kim, Sanket Tavarageri, Josep Torrellas, and P Sadayappan

 21 of 23

Pacific Northwest National Laboratory (John Feo)

Accomplishments

Application Work on CNC

Three versions of Lulesh have been pushed to the X-Stack repository: C, CnC-Intel, CnC-OCR. Lulesh in

CnC-OCR form has successfully run on FSim with 1 and 2 element domain sizes. We will present Lulesh

characterization data in the near future. Our current efforts focus on HPGMG. Our current HPGMG

implementation is a follows: The first step was to build the HPGMG control in CnC and implement its

different cycles (v, f and w). Under the CnC programming model, keeping the cycle code separate from

the step code becomes trivial. Thus allowing us to reuse the steps regardless of which cycle is running.

The second step was then to implement and test this theory. The first two steps are complete and we

are currently working on the third step; integrating the CnC control into the existing HPGMG code.

Figure 8 - The application flow for the HPGMG mini app

ACDTF on OCR

As part of the XSTACK Traleika Project, PNNL is developing a prototype of a dynamic self-aware

lightweight system 1, the Architected Composite Data Type Framework (ACDTF) – originally called the

Rescinded Primitive Data Type (RPDT) -- running on top of the Open Community Runtime (OCR)

interface (ACDTF-OCR). This prototype will feature, once completed, real time decision-based

compression, dynamic range adjustment and algebraic invariant operations that use real-time sampling.

1 Marquez A, JB Manzano Franco, S Song, B Meister, S Shrestha, T St. John, and GR Gao. 2014. "ACDT: Architected Composite Data Types.

Trading-in Unfettered Data Access for Improved Execution." To Appear In The 20th IEEE International Conference on Parallel and
Distributed Systems.

 22 of 23

The current prototype has been implemented across three hardware platforms: a Linux based cluster, a

shared memory node and the Traleika Glacier Simulator (FSIM). The prototype supports two

compression algorithms (The Floating Point Compression and an in-situ Run Length Encoding)2, an

enhanced compressed format (based on the sparse compressed block format) and two sampling

methods (based on block and differential run-length sparseness).

In addition, the prototype offers wrappers to the OCR’s interfaces and expands upon them. It adds

typing information and lets users define block composites, decision thresholds, invariant operations,

sampling points, and macros to transform code segments into single/double precision. Governors that

make the decisions to compress, sample, and actually do compression are configurable to run on

dedicated cores, at OCR interface points, or across all cores. Furthermore, these governors can run

asynchronously or synchronously. Thanks to these features, we can do exploration studies on the best

prototype configurations across various platforms.

As part of our experiments, we have concentrated on the Cholesky kernel and characterized its

performance and its ACDTF overhead.

Figure 9 - ACDFT-OCR shows sparse matrix compression improvements for “olafu” at event points across its different
configurations -- synchronous vs. (fast-) asynchronous, sampling vs. non-sampling, various governor strategies -. (Comp =
Compression, Samp = Sampling, Gov = Governor). Furthermore, the asynchronous version has a portable implementation that
works on any version of OCR, and a fast version which requires pointers for the platform to be able to address any memory
location. ACDTF supports a centralized core to handle requests (Cent). Block size is ~300.

2 Peter Lindstrom and Martin Isenburg. 2006. Fast and Efficient Compression of Floating-Point Data. IEEE Transactions on Visualization

and Computer Graphics 12, 5 (September 2006), 1245-1250. DOI=10.1109/TVCG.2006.143 http://dx.doi.org/10.1109/TVCG.2006.143

Event
(Comp,
Samp)

Event
(Com,
Samp,
Gov)

Event
(Comp,
Samp) +

Sync
(BlGov)

Event
(Comp) +

Sync
(Samp,
BlGov)

Sync
(Comp,
Samp,
BlGov)

Port.
Async
Help

(Comp,
Samp,
BlGov)

Fast Async
Help

(Comp,
Samp,
BlGov)

Cent. Fast
Async
Help

(Comp,
Samp,
BlGov)

Compute Speedup 18.14 18.61 18.48 18.40 18.43 13.30 17.83 16.90

0.00
2.00
4.00
6.00
8.00

10.00
12.00
14.00
16.00
18.00
20.00

SP
EE

D
U

P

ACDTF Zero Perf Cholesky (olafu, 16146^2)

http://dx.doi.org/10.1109/TVCG.2006.143

 23 of 23

Preliminary results show that we are able to achieve performance rates between 0.99x to 18x vs. non-

enhanced OCR across various sparse matrices using a 16 core Xeon system regardless of the

configuration of our system, as long as we detect invariant operations and use our compressed zero-

configuration. All others configurations show no improvement or less than 1% performance degradation

due to overhead being low for the coarseness of the work (~300^2 block size). We expect other

configurations to excel, once we exercise them on improved distributed ACDT-OCR implementations.

Issues
Salient limitations to characterize ACDTF-OCR performance on other platforms include limited FSIM

accuracy as well as only global data allocation support. Poor performance of the distributed OCR

version is another major culprit.

The lack of application and kernels ported and optimized to OCR.

Goals for Next Quarter
Further integration of ACDTF-OCR, including and adding better multi-level memory support in the

simulator and on X86. However, some of these features require OCR modifications.

We will be exploring other applications.

Continue developing HPGMG in CnC.

Inventions
None.

Publications
None.

