
Next Generation AMR:

An Application Developer’s Perspective

Ann Almgren
April 7, 2016

AMR is a Team Sport

• BoxLib Contributors and
Collaborators:
Vince Beckner, John Bell, Cy
Chan, Marc Day, Brian
Friesen, Max Katz, (Mike
Lijewski), Andy Nonaka, Sam
Williams, (Mike Welcome),
Weiqun Zhang, Yili Zheng,
Mike Zingale and more

AMR is Used in a Number of LBL Applications

Combustion Astrophysics Cosmology

Accelerators
(coming soon)

Subsurface Climate

Block-Structured AMR for Time-Dependent PDEs

• Data in the form of
– mesh data (on centers, faces and

corners of cells) and
– particles

• Data is (in the eyes of the
application) organized into “large”
grid patches at different levels
– Patches may not be fixed size
– Patches change dynamically

Key Features
• Meshing is dynamic

– Can’t statically optimize
– Can’t always amortize set-up time / caching of important

information over many operations

• Single-level operations and multi-level operations
• Communication between grids at a single level, and

between grids at coarser/finer levels
• Mesh and particle-mesh operations
• Explicit and implicit solves
• No one approach to spatial or temporal discretizations
• We already have many codes that work really well, and

the design space of adaptive algorithms keeps increasing

Software Principles

• Software “solutions” must not get in the way of solving
the problems we want to solve. Show-stoppers include

• The software must not preclude the design of new
algorithms and the inclusion of new physics.

• The application code must work once your research
project has ended

Rewrite
entire
codes

Loss of
Algorithmic
Flexibility

Loss of
Performance

Key Issues from “Our” Perspective

1. On-node performance

2. Programming Models – will MPI+X be enough?

3. Load Balancing

4. Synchronicity

1. On-Node Performance

1. Use all the cores effectively when Ngrids << Ncores
• Tiling (unit of work = 1 tile not 1 grid) is one way to break

up the work
– Can be hidden in the iterator and invisible to the application

2. Optimize the performance of each core (autotuning,
vectorization, code transformation, communication-avoiding
algorithms)
• This tends to be more application-specific
• Can write specific optimized code for some common

routines, but would be nice to have “easy” ways to
optimize others.

1 node of Edison (12 cores) 1 node of Babbage (60 cores)

1 core of
Edison
128^3 domain

Performance Benefits from Tiling

Courtesy of Weiqun Zhang

2. Programming Models: Is MPI+X Enough?

Current paradigm has been 1-4 MPI processes per
node, with OpenMP to thread over tiles.

• Flat MPI is not the answer
– Too many grids (bad for metadata)
– Grids too small (too many ghost cells)
– Too many MPI processes  performance hit

• MPI+OpenMP communication has not been great in
our applications

2. Programming Models: Is MPI+X Enough?

• Talk by Yili Zheng yesterday gave examples of BoxLib + X where X was
– Flat vs Hierarchical
– Combinations of MPI, OpenMP, UPC++

• UPC++ shows performance benefits even now (thanks to Weiqun Zhang
and Yili Zheng)

• Our strategy is to keep the options available in BoxLib as a run-time
option

• Keys to Success:
– “Collaboration and integration are key!” (quote from Yili)
– Incremental approach – never lost functionality of current codes
– By keeping options open, we are guaranteed no loss of performance

relative to committing to a single model
– Choice of model is invisible to the application developer

3. Coarse-Grained Load Balancing
Predictive
• Use a model to determine

• optimal grid size, tile size, and distribution of grids to processes
• cost of data movement vs computational imbalance, etc

heuristic for when it is worth making changes
• This allows us to assess both current and future

architectures

Run-time
• Use real-time measurements in combination with heuristics

to determine when action is required and what action to
take – moving data more often might make more sense
when network less crowded, etc

• Experiments suggest that on Edison/Cori data movement of
LMC simulation state data roughly 1% of simulation time

BoxLib
AMR Library

Box List
Level 0

0: ((0, 0, 0) (15,31,15)) 16 32 16 :: 3
0: ((16, 0, 0) (39,31,15)) 24 32 16 :: 1

Level 1
1: ((30, 0, 0) (47,31,31)) 18 32 32 :: 2

1: ((48,14,10) (67,29,29)) 20 16 20 :: 3
...

Level 2
2: ((72, 0,34) (83,19,59)) 12 20 26 :: 1
2: ((72, 0,60) (83,15,75)) 12 16 16 :: 2

…
ProgrAMR Task

Graph Analysis Tool

SST Macroscale
Network Simulation

Problem
Specification
(e.g. CASTRO)

XML
<boxes>
<box id="R1" loc="0" />
<box id="R4" loc="1" />
</boxes>

<events>
<comp id="E10" dep="E5,E11” time="0.0676" />
<comm id="E12" dep="E2” from="R1" to="R4"
size="1512" />
...
</events>

Performance
Estimates

Task Dependency Graph

BoxLib/ProgrAMR/SST Analysis Workflow

Credit to: Cy Chan, John Bachan, Vince
Beckner, John Shalf, Joseph Kenny,
Jeremiah Wilke

4. Synchronicity

• Synchronicity means different things to different people
• Not clear that we really know what we need
• Possible needs:

– Low-level asynchrony: imagine operating on “interior” tiles while
filling ghost cells of tiles touching boundaries –

• invisible to the application
– Medium-level asynchrony: imagine performing 4 multigrid solves (on

different solution variables) at the same time in order to e.g., overlap
computation of one with communication of the other –

• visible to application but ok
– High-level asynchrony – change ordering of high-level tasks

• for an algorithm with many implicit operations this may be less effective –
can’t have any one grid get too far ahead …

• Potential memory bloat if can’t update solution in place
• Needs to know a lot more about the algorithm!

Summary

We want to take advantage of what CS experts have to
offer -- languages/runtimes/programming models can
certainly make our lives easier.

Caveats:
• Don’t take away our ability to design new

algorithms and support multiple applications
• Make the hard things easy; don’t make the easy

things hard.

	Next Generation AMR:�An Application Developer’s Perspective
	AMR is a Team Sport
	AMR is Used in a Number of LBL Applications
	Block-Structured AMR for Time-Dependent PDEs
	Key Features
	Software Principles
	Key Issues from “Our” Perspective
	1. On-Node Performance�
	Performance Benefits from Tiling
	2. Programming Models: Is MPI+X Enough?�
	2. Programming Models: Is MPI+X Enough?�
	3. Coarse-Grained Load Balancing
	Slide Number 13
	4. Synchronicity
	Summary

