
Building an Open Community Runtime
(OCR) framework for Exascale
Systems

Birds of a Feather Session, SC12, Salt Lake City

November 14, 2012

Organizers: Vivek Sarkar, Barbara Chapman,
William Gropp, Rob Knauerhase

2

Agenda

1. OCR Goals and Approach (10 minutes)
– Vivek Sarkar

2. Lightning Talks (5 minutes each)
– Barbara Chapman
– Bill Gropp
– Rich Lethin

3. Overview of OCR v0.7 open source release (10 minutes)
– Rob Knauerhase

4. Hands-on demo of OCR v0.7 release (10 minutes)
– Romain Cledat

5. Discussion and wrap-up
– All

3

Runtime Challenges for Exascale
and Extreme Scale Computing

• Performance of extreme scale systems will be driven by
parallelism, and constrained by programmability, energy,
data movement, and resilience

• Past approaches to parallel runtime systems focused on
innovation in isolated layers that focused on isolated
resources e.g., communication runtimes for network
resources, task-scheduling runtimes for compute resources

è a cooperative (rather than isolated) approach must be
pursued to address key challenges in management of shared
resources in extreme scale runtime systems

4

Motivation for an Open Community
Runtime

• A runtime framework that …
– is representative of execution models expected in future extreme

scale systems
– can be targeted by multiple high-level programming systems
– can be effectively mapped on to multiple extreme scale platforms
– can be extended and customized for specific programming and

platform needs
– can be used to obtain early results to validate new ideas
– is available as an open-source testbed

• Approach:
– Address revolutionary challenges collaboratively
– Reduce duplication of infrastructure effort, while

5

Summary of OCR Open Source Project

• Hosted on 01.org (details to follow)
• Goals

– Modularity
– Stable APIs
– Extreme flexibility in implementation
– Transparency

• Development process
– Continuous integration
– Quarterly milestones
– Mailing lists for technical discussions, build status, etc

• Organization
– Steering Committee (SC) --- sets overall strategic directions

and technical plans
– Core Team (CT) --- executes technical plan and decides

actions to take for source code contributions
– Membership of SC and CT will turn over periodically based on

level of participation

6

Inaugural Membership for OCR
Steering Committee and Core Team

Steering Committee
–Vivek Sarkar (Rice U.)

– Inaugural Chair

–Barbara Chapman (UH)

–Guang Gao (UD)

–Bill Gropp (UIUC)

–Rob Knauerhase (Intel)

–Rich Lethin (Reservoir)

Core Team
–Zoran Budimlic (Rice)

–Vincent Cave (Rice)

–Sanjay Chatterjee (Rice)

–Romain Cledat (Intel)

–Sagnak Tasirlar (Rice)

7

OCR Acknowledgments

• Design strongly influenced by
– Intel Runnemede project (via DARPA UHPC program)

– power efficiency, programmability, reliability, performance

– Codelet philosophy – Prof. Gao’s group at U. Delaware
– implicit notions of dataflow

– Habanero project – Prof. Sarkar’s group at Rice U.
– data-driven tasks, data-driven futures, hierarchical places

– Concurrent Collections model – Intel Software/Solutions Group
– decomposition of algorithm into steps/items/tags, tuning

– Observation-based Scheduling – Intel Labs
– monitoring and dynamic adaptation to load and environment

– Machine Description – Prov. Sandrieser, University of Vienna

• Partial support for the OCR v0.7 release was provided through the X-
Stack program funded by U.S. Department of Energy, Office of
Science, Advanced Scientific Computing Research (ASCR)

8

OCR Assumptions

• A fine-grained, asynchronous event-driven runtime
framework with movable data blocks and sophisticated
observation enables the next wave of high-performance
computing

• Fine-grained parallelism helps achieve concurrency levels
required for extreme scale

• Asynchronous events and movable data blocks help cope
with data movement, non-uniformity, heterogeneity, and
resilience in extreme scale applications and platforms

• Sophisticated observation enables introspection into
system behavior, feedback to OCR client, and adaptation
based on algorithmic and performance tuning

9

OCR High-level Design

• Application/algorithm
decomposition exposes greater
parallelism than current
thread/barrier models

• Separation of concerns among
programming environment, hero
programmer, tuning hints

• Event-Driven Runtime manages
tasks and data blocks to adapt to
changes in platform behavior
(resilience, machine configuration
changes, mission/goal changes),
while obeying all control and data
dependences

10

Agenda

1. OCR Goals and Approach (10 minutes)
– Vivek Sarkar

2. Lightning Talks (5 minutes each)
– Barbara Chapman
– Bill Gropp
– Rich Lethin

3. Overview of OCR v0.7 open source release (10 minutes)
– Rob Knauerhase

4. Hands-on demo of OCR v0.7 release (10 minutes)
– Romain Cledat

5. Discussion and wrap-up
– All

Thoughts on an Open
Runtime

William Gropp
www.cs.illinois.edu/~wgropp

http://www.cs.illinois.edu/~wgropp

12

Hybrid Programming and
Shared Resources

• Hybrid model is a good thing
• But resources are shared:

♦ Network
♦ Memory bandwidth
♦ Compute cores
♦ Etc.

• How can we make the elements of
the hybrid model work together?

13

Which programming runtime
controls resources?

• Currently, most assume that all resources are dedicated
to themselves

♦ E.g., MPI runtime assumes all cores are used by MPI;
OpenMP assumes cores available for OpenMP.

• Allocation of resources is not static
♦ E.g., MPI sometimes needs an “agent” for communication

progress, esp for nonblocking collective, passive-target
RMA, Redezvous point-to-point progress; helpful to take a
core for this

• Solution to date: tell programming runtimes at startup
what resources they have (if you are lucky)

• Needed: Ways for multiple runtimes to negotiate the
resources to share, at startup and during execution

♦ Note: Not a common runtime that they all use

14

Common Capabilities

• Much desire with a common runtime on top of
which all parallel programming methods may
be implemented

♦ Obvious advantages – shared code, more rapid
development

• Unfortunately, not realistic
♦ Programmer productivity can be related (in part) to

reducing the size of basic element that can be used
and still get good performance (everyone wants this
to be a single word)

♦ Performance at this end is extremely sensitive to
exact semantics of hardware, implementation
(library) overhead, including even length of call list
and data alignment

15

What Can We Do?

• Alternative: Provide common capabilities for
cases that are not sensitive to these issues
(typically operations involving larger blocks of
data)

♦ Need to be extensible so that customized interfaces
and implementations can be used for the
performance critical

• Implications
♦ Common runtime can provide some services but

critical ones will need to designed for and
implemented to specific platforms

• This work can be shared inside a community, mostly as
code examples

♦ Runtime must be extensible, with ability to plug in
specialized services

Thoughts on an Open
Runtime

William Gropp
www.cs.illinois.edu/~wgropp

http://www.cs.illinois.edu/~wgropp

17

Hybrid Programming and
Shared Resources

• Hybrid model is a good thing
• But resources are shared:

♦ Network
♦ Memory bandwidth
♦ Compute cores
♦ Etc.

• How can we make the elements of
the hybrid model work together?

18

Which programming runtime
controls resources?

• Currently, most assume that all resources are dedicated
to themselves

♦ E.g., MPI runtime assumes all cores are used by MPI;
OpenMP assumes cores available for OpenMP.

• Allocation of resources is not static
♦ E.g., MPI sometimes needs an “agent” for communication

progress, esp for nonblocking collective, passive-target
RMA, Redezvous point-to-point progress; helpful to take a
core for this

• Solution to date: tell programming runtimes at startup
what resources they have (if you are lucky)

• Needed: Ways for multiple runtimes to negotiate the
resources to share, at startup and during execution

♦ Note: Not a common runtime that they all use

19

Common Capabilities

• Much desire with a common runtime on top of
which all parallel programming methods may
be implemented

♦ Obvious advantages – shared code, more rapid
development

• Unfortunately, not realistic
♦ Programmer productivity can be related (in part) to

reducing the size of basic element that can be used
and still get good performance (everyone wants this
to be a single word)

♦ Performance at this end is extremely sensitive to
exact semantics of hardware, implementation
(library) overhead, including even length of call list
and data alignment

20

What Can We Do?

• Alternative: Provide common capabilities for
cases that are not sensitive to these issues
(typically operations involving larger blocks of
data)

♦ Need to be extensible so that customized interfaces
and implementations can be used for the
performance critical

• Implications
♦ Common runtime can provide some services but

critical ones will need to designed for and
implemented to specific platforms

• This work can be shared inside a community, mostly as
code examples

♦ Runtime must be extensible, with ability to plug in
specialized services

21

Agenda

1. OCR Goals and Approach (10 minutes)
– Vivek Sarkar

2. Lightning Talks (5 minutes each)
– Barbara Chapman
– Bill Gropp
– Rich Lethin

3. Overview of OCR v0.7 open source release (10 minutes)
– Rob Knauerhase

4. Hands-on demo of OCR v0.7 release (10 minutes)
– Romain Cledat

5. Discussion and wrap-up
– All

OpenMP Language and Implementation
Technologies Need a Powerful Runtime

Barbara Chapman
University of Houston

OCR BOF, SC12

http://www.cs.uh.edu/~hpctools

Acknowledgements: NSF CNS-0833201, CCF-0917285;
DOE DE-FC02-06ER25759

http://www.cs.uh.edu/~hpctools

OpenMP 4.0 Release
Candidate 1
¨ Presented at OpenMP BOF (yesterday)
¤Now on OpenMP website

¨ Candidate topics:
¤ Affinity and locality
¤ SIMD extensions
¤ Error model

¨ On-going work:
¤ Accelerator
¤ Tools interface

The Accelerator Model

¨ Execution Model: Offload data
and code to accelerator
¤ Target construct creates tasks

to be executed by devices
¤ Initial device thread waits to

execute the device tasks
¨ Memory Model:

¤ Data may be copied in or out,
allocated on accelerator

¤ Copies of shared data are
synchronized explicitly or
implicitly at end of the target
construct regions.

¨ Integration with tasking
extensions

¨ See technical report

Main
Memory

Application
data

General
Purpose

Processor
Cores

Acc

Application
data

acc. cores

Copy in
remote
data

Copy out
remote data

Tasks
offloaded to
accelerator

CPU

¨ OpenMP Places and thread affinity policies
¤ OMP_PLACES to describe places
¤ affinity(spread|compact|true|false)

¨ SPREAD: spread threads evenly among the places
spread 8

¨ COMPACT: collocate OpenMP thread with master
thread

compact 4

OpenMP 4.0 Affinity Proposal

p0 p1 p2 p3 p4 p5 p6 p7

p0 p1 p2 p3 p4 p5 p6 p7

OpenMP Error Model

¨ Cancel directive
¤ #pragma omp cancel [clause[[,]clause] ...]
¤ !$omp cancel [clause[[,]clause] ...]
¤ Clauses: parallel, sections, for, do

Thread A Thread B Thread C

parallel region

Toward Asynchronous OpenMP
Execution

T.-H. Weng, B. Chapman: Implementing OpenMP Using Dataflow Execution
Model for Data Locality and Efficient Parallel Execution. Proc. HIPS-7, 2002

n May be difficult for user to express
computations in form of task graph

n Compiler translates “standard”
OpenMP into collection of work
units (tasks) and task graph

n Analyzes data usage per work unit
n Trade-off between load balance

and co-mapping of work units that
use same data

n What is “right” size of work unit?
q Might need to be adjusted at run time

¨ 1) #pragma omp task out [(data – reference – list)]

¨ 2) #pragma omp task in [(data – reference – list)]

¨ Items listed in the data reference list can be thought of
as synchronization identifiers called ‘task tags’

¨ Extensions proposed follow a topological sort
¤ a task can only depend on a task which is before it in program order

Data-Driven Model with OpenMP
Tasking Extensions at UH

4 8 16 32
0
5

10
15
20
25
30
35
40

matrix 4096 X 4096

GCC nodep
ICC nodep
UHCC nodep
UHCC dep

blocks per dimension

tim
e

in
 s

e c
o n

d s

DARWIN: Feedback-Based Adaptation
¨ Dynamic Adaptive Runtime Infrastructure

¤ Online and offline (compiler or tool) scenarios
¤ Monitoring
n Capture performance data for analysis via monitoring
n Relate data to source code and data structures
n Apply optimization and / or visualize
n Demonstrated ability to optimize page placement on NUMA

platform; results independent of numthreads, data size

OpenMP
Runtime

Persistent
Storage data analysis

DARWIN
profiling create

data-centric
information

Besar Wicaksono, Ramachandra C Nanjegowda, and Barbara Chapman. A
Dynamic Optimization Framework for OpenMP. IWOMP 2011

Runtime False Sharing Detection

0

2

4

6

8

Sp
ee

du
p

1-thread 2-threads
4-threads 8-threads

0

2

4

6

8

Sp
ee

du
p

1-thread 2-threads
4-threads 8-threads

Original Version Optimized Version

B. Wicaksono, M. Tolubaeva and B. Chapman. “Detecting false sharing in OpenMP
applications using the DARWIN framework”, LCPC 2011

OCR Support for Legacy
Applications
¨ OCR needs to be able to support current and

future programming model
¤ Very important to support legacy apps
¤Opens up to a wide range of apps
¤Novel implementation techniques for existing

models
¤ Explore new features, limitations, new

programming models

32

MPI/OpenMP Application

XPRESS Migration Stack

XPI

OpenX

OpenMP Thin Runtime
Glue

OpenMP compiler
MPI

Legacy
stack

• Support legacy MPI and OpenMP codes in XPRESS
• Develop a migration path for OpenMP and MPI application toward

new execution model
• Communicate XPRESS experiences back to standards committee

– Potentially suggest extensions to OpenMP and MPI with features from
XPRESS

Goals for Legacy Code Migration

The end

34

Agenda

1. OCR Goals and Approach (10 minutes)
– Vivek Sarkar

2. Lightning Talks (5 minutes each)
– Barbara Chapman
– Bill Gropp
– Rich Lethin

3. Overview of OCR v0.7 open source release (10 minutes)
– Rob Knauerhase

4. Hands-on demo of OCR v0.7 release (10 minutes)
– Romain Cledat

5. Discussion and wrap-up
– All

35

Reservoir presentation

• (See embedded PDF – after SC12, we’ll post all the slides in
the same format. J)

36

Agenda

1. OCR Goals and Approach (10 minutes)
– Vivek Sarkar

2. Lightning Talks (5 minutes each)
– Barbara Chapman
– Bill Gropp
– Rich Lethin

3. Overview of OCR v0.7 open source release (10 minutes)
– Rob Knauerhase

4. Hands-on demo of OCR v0.7 release (10 minutes)
– Romain Cledat

5. Discussion and wrap-up
– All

37

What’s not in OCR v0.7

• It’s scaffolding,
– just a framework

• It’s not the Sears
Tower! (yet)

38

What’s in OCR v0.7

• Event-driven tasks (EDTs)
– can be processes, functions or codelets (open research question)

– decomposition is up to programmer & compiler

– could be data-parallel within themselves

• Events (Dependences)
– specified explicitly as contingencies on which EDTs are initiated

– EDTs can fire anytime after all their dependences are met

– several types of dependences
– control dependences: B cannot start until A finishes
– data dependences: B cannot start until inputs D1 and D2 are available,

and processing on D3 has finished
– independent events (e.g. triggers, environment, ...)

– dependences are specified as GUIDs throughout the system

inc/ocr-edt.h

inc/ocr-edt.h

39

What’s in OCR v0.7

• Memory datablocks
– replacement for malloc()
– contains semantically-meaningful metadata that runtime can use
– relocatable by runtime for power, reliability, ...

– exploring hardware assistance; no movement in v0.7 release
– allows exploitation (or modeling) of NUMA, scratchpad memories, etc.

– e.g. instrumentation to infer energy usage from different placements and
configurations

• Machine description
– XML schema plus conforming XML documents

– based largely on U. Vienna’s Platform Description Language
– allows expression of hw configuration (cores, memory, interconnect)

– exploration of same decompositions on different hardware, real or
simulated

– current state: present, but barebones, not fully used

inc/ocr-db.h

xsd/ocr-pdl.xsd

40

Implementation Details

• Complete but non-optimized implementation
– performance is not (yet!) a goal

• Runs on top of Linux
– shows functionality without having to build a whole OS
– other versions running on simulation (UHPC, X-stack)

• Supports “hero programmers” for nontrivial apps
– pending programming model integrations

• Modularity as a goal whenever possible
– for ease of subsystem replacement, augmentation, …
– supporting other research using OCR components

41

What’s coming in OCR v(0.7++)

• Distribution
– runtime functionality across “nodes” w/separate memory spaces

– MPI integration under the covers

• Tuning expression
– hints via better groupings for temporospatial locality

– leverage hierarchical place trees and CnC affinity groups, …

• Machine description improvements
– better integration with runtime
– ongoing observation of machine state (load, failures, ...)

• Different underlying thread support
– e.g. Sandia Qthreads, direct mapping to hw threads

42

OCR resources

• Project homepage at
http://01.org/projects/open-community-runtime

• Public repository on github http://github.com/01org/ocr
• Mailing lists

– ocr-announce
– ocr-devel
– ocr-discuss
– ocr-build

• Wiki and so forth coming soon

http://01.org/projects/
open-community-runtime

graciously hosted by

http://01.org/projects/open-community-runtime
http://github.com/01org/ocr
http://01.org/projects/

43

Links to source code
and

mailman subscription pages

Copy of
today’s slides

44

How you can get involved

• Runtime development
– soliciting code contributions; we can use more brains/hands!
– build a new subsystem, or adapt OCR to your existing research

• Develop/port applications
– by-hand or compiler-driven decomposition into EDTs
– explore behavior of different types of algorithms and tunings
– enable execution on different machine types (including research

architectures)

• Join the discussion mailing list
– offer input about connections to other work, insight into areas in

which you have expertise/experience

45

Live
demonstration

46

Smith-Waterman implementation

ocrEdtCreate(&task_guid, smith_waterman_task, 9, NULL,
(void**) p_paramv, PROPERTIES, 3, NULL);

ocrAddDependency(tile_matrix[i][j-1].right_column_event_guid,
task_guid, 0);

ocrAddDependency(tile_matrix[i-1][j].bottom_row_event_guid,
task_guid, 1);

ocrAddDependency(tile_matrix[i-1][j1].bottom_right_event_guid,
task_guid, 2);

ocrEdtSchedule(task_guid);

47

OCR Comparison with OpenMP
(Smith-Waterman algorithm)

0
1
2
3
4
5
6
7
8
9

10

1 2 4 8 16

Ex
ec

ut
io

n
ti

m
e

(s
ec

)

Number of cores

OpenMP
OCR

Input set of ~37k nucleotides
(see http://en.wikipedia.org/wiki/Smith-Waterman_algorithm)

http://en.wikipedia.org/wiki/Smith-Waterman_algorithm)

48

Questions?

Comments?

Unbridled enthusiasm?

(If you did not receive a flyer with
information and the API cheat sheet,
please pick one up on the way out!)

