
Hobbes:	
OS	and	Runtime	Support	for	
Application	Composition

Hobbes	Team
Institution Person Role

Georgia Institute of Technology Karsten Schwan PI

Indiana University Thomas Sterling PI

Los Alamos National Lab Mike Lang PI

Lawrence Berkeley National Lab Costin Iancu PI

North Carolina State University Frank Mueller PI

Northwestern University Peter Dinda PI

Oak Ridge National Laboratory David Bernholdt PI

Oak Ridge National Laboratory Arthur B. Maccabe Chief Scientist

Sandia National Laboratories Ron Brightwell Coordinating PI

University of Arizona David Lowenthal PI

University of California – Berkeley Eric Brewer PI

University of New Mexico Patrick Bridges PI

University of Pittsburgh Jack Lange PI

Project	Goals

§ Deliver	prototype	OS/R	environment	for	R&D	in	extreme-scale	
scientific	computing

§ Focus	on	application	composition	as	a	fundamental	driver
§ Develop	necessary	OS/R	interfaces	and	system	services	required	to	

support	resource	isolation	and	sharing
§ Support	complex	simulation	and	analysis	workflows

§ Provide		a	lightweight	OS/R	environment	with	flexibility	to	build	
custom	runtimes
§ Compose	applications	 from	a	collection	of	enclaves

§ Leverage	Kitten	lightweight	kernel	and	Palacios	lightweight	virtual	
machine	monitor
§ Node	Virtualization	Layer	(NVL)
§ Enable	high-risk	high-impact	research	in	virtualization,	energy/power,	

scheduling,	and	resilience

• Problem
– HPC applications are increasingly comprised of multiple

distinct components with different requirements for OS,
software stack and system resources
– E.g., simulation+analytics, coupled multiphysics, scalable

performance analysis and debugging

• Solution
– Instantiate “enclaves” for each application component using

high-performance virtualization technology
– Provide OS and software stack tailored for application component within each enclave
– Provide mechanisms for controlled interaction between enclaves (components)

– Selective sharing of memory regions (data exchange)
– Name service (discovery and rendezvous)

• Recent results
– Proof-of-principle for XEMEM cross-enclave memory API
– Use XEMEM as “transport” in ADIOS, TCASM coupling tools
– Demonstrate composite simulation+analytics applications using XEMEM

–Impact
– Composition can be made transparent at the application level (no changes, performance neutral)
– Allows detailed resource management and scheduling among enclaves (other Hobbes R&D areas)

System-Level	Support	for	Composition	of	Applications

Enabling	Multi-OS/R	Stack	Application	Composition

§

In-situ Simulation + Analytics composition in
single Linux OS vs. Multiple Enclaves

• Problem
• HPC applications evolving to more compositional approach, overall application is a

composition of coupled simulation, analysis, and tool components
• Each component may have different OS/R requirements, no “one-size-fits-all” OS/R stack

• Solution
• Partition node-level resources into “enclaves”, run different OS/R instance in each enclave

Pisces Co-kernel Architecture: http://www.prognosticlab.org/pisces/
• Provide tools for creating and managing enclaves, launching applications into enclaves

Leviathan Node Manager: http://www.prognosticlab.org/leviathan/
• Provide mechanisms for cross-enclave application composition and synchronization

XEMEM Shared Memory: http://www.prognosticlab.org/xemem/

• Recent results
• Demonstrated Multi-OS/R approach provides excellent

performance isolation; better than native performance possible
• Demonstrated drop in compatibility with both commodity and

Cray Linux environments
• Impact

• Application components with differing OS/R requirements can
be composed together efficiently within a compute node,
minimizing off-node data movement

• Compatible with unmodified vendor provided OS/R environments, simplifies deployment

Support	for	extreme-scale	OS/R	monitoring	and	control

§

• Problem
– Operating system/runtime (OS/R) components running throughout system must be monitored and

controlled, but extreme system scale makes it difficult to do so (too much data, and/or too many
“hops” to get data from one part of system to another)

• Solution
– Integrate scalable, distributed data store with publish and subscribe service in a Global Information

Bus (GIB)
– Interface with Hobbes Leviathan

node-level resource manager

– Recent progress
– Defined important GIB use cases

– System boot
– Launch application
– Respond to application failure
– Respond to application termination

– Designed and began pilot implementation of integration of distributed data store based on Riak
open source database, BEACON publish-subscribe software from ARGO project, and Leviathan

• Impact
– Supports monitoring and control of a large number of system software components without

excessive application intrusion
– Usable by both Hobbes and ARGO projects

Data$Store$ Data$Store$Data$Store$

Leviathan$

Applica2on(s)$

BEACON$

Leviathan$

Applica2on(s)$

BEACON$

Leviathan$

Applica2on(s)$

BEACON$

BEACON$ BEACON$ BEACON$

GIB data store and publish/subscribe components
Dashed lines indicate potential notifications from publishers to subscribers

mini-ckpts:	Surviving	OS	Failures	in	Persistent	Memory

§

• Problem
– A failure of the operating system (OS) causes a failure of

an otherwise healthy HPC application

• Solution
– Execute the application in persistent memory (PRAMFS

in DRAM) that is able to survive OS failures and reboots
– Track OS state used by the application and MPI for recovery
– Rejuvenate (warm reboot) the OS in case of a failure
– Restore tracked OS state used by the application and MPI
– Transparently continue to execute the application in

persistent memory without loss of state/progress

– Recent results
– Prototype implementation supports OpenMP and

MPI applications with certain limitations
– OS rejuvenation and recovery takes 3-6 seconds
– Failure-free runtime overhead is of 3-5% for a

number of key HPC workloads
• Impact

– First solution that transparently offers OS failure tolerance without loss of state/progress
– Transparently handling OS failures locally reduces the need for global checkpoint/restart
– Latent OS errors that have not resulted in a failure can be cleared by rejuvinating the OS

 0

 50

 100

 150

 200

NPB CG

NPB LU

NPB EP

NPB IS

PENNANT

Clover Leaf

Ru
nt

im
e

in
 S

ec
on

ds

Open MPI
librlmpi

librlmpi (with PRAMFS remap)
librlmpi (mini-ckpts & PRAMFS)

 0

 10

 20

 30

 40

 50

 0 1 2 3 4

Ad
di

tio
na

l R
un

tim
e

in
 S

ec
on

ds

Number of Kernel Panic Injections

Same Target CG
Alternating Target CG

Same Target IS
Alternating Target IS

Same Target LU
Alternating Target LU

