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Project	Goals

§ Deliver	prototype	OS/R	environment	for	R&D	in	extreme-scale	
scientific	computing

§ Focus	on	application	composition	as	a	fundamental	driver
§ Develop	necessary	OS/R	interfaces	and	system	services	required	to	

support	resource	isolation	and	sharing
§ Support	complex	simulation	and	analysis	workflows

§ Provide		a	lightweight	OS/R	environment	with	flexibility	to	build	
custom	runtimes
§ Compose	applications	 from	a	collection	of	enclaves

§ Leverage	Kitten	lightweight	kernel	and	Palacios	lightweight	virtual	
machine	monitor
§ Node	Virtualization	Layer	(NVL)
§ Enable	high-risk	high-impact	research	in	virtualization,	energy/power,	

scheduling,	and	resilience



• Problem
– HPC applications are increasingly comprised of multiple 

distinct components with different requirements for OS, 
software stack and system resources
– E.g., simulation+analytics, coupled multiphysics, scalable 

performance analysis and debugging

• Solution
– Instantiate “enclaves” for each application component using 

high-performance virtualization technology
– Provide OS and software stack tailored for application component within each enclave
– Provide mechanisms for controlled interaction between enclaves (components)

– Selective sharing of memory regions (data exchange)
– Name service (discovery and rendezvous)

• Recent results
– Proof-of-principle for XEMEM cross-enclave memory API
– Use XEMEM as “transport”  in ADIOS, TCASM coupling tools
– Demonstrate composite simulation+analytics applications using XEMEM 

–Impact
– Composition can be made transparent at the application level (no changes, performance neutral)
– Allows detailed resource management and scheduling among enclaves (other Hobbes R&D areas)

System-Level	Support	for	Composition	of	Applications



Enabling	Multi-OS/R	Stack	Application	Composition

§

In-situ Simulation + Analytics composition in 
single Linux OS vs. Multiple Enclaves

• Problem
• HPC applications evolving to more compositional approach, overall application is a 

composition of coupled simulation, analysis, and tool components
• Each component may have different OS/R requirements, no “one-size-fits-all” OS/R stack

• Solution
• Partition node-level resources into “enclaves”, run different OS/R instance in each enclave

Pisces Co-kernel Architecture: http://www.prognosticlab.org/pisces/
• Provide tools for creating and managing enclaves, launching applications into enclaves

Leviathan Node Manager: http://www.prognosticlab.org/leviathan/
• Provide mechanisms for cross-enclave application composition and synchronization

XEMEM Shared Memory: http://www.prognosticlab.org/xemem/

• Recent results
• Demonstrated Multi-OS/R approach provides excellent

performance isolation; better than native performance possible
• Demonstrated drop in compatibility with both commodity and 

Cray Linux environments
• Impact

• Application components with differing OS/R requirements can 
be composed together efficiently within a compute node, 
minimizing off-node data movement

• Compatible with unmodified vendor provided OS/R environments, simplifies deployment



Support	for	extreme-scale	OS/R	monitoring	and	control

§

• Problem
– Operating system/runtime (OS/R) components running throughout system must be monitored and 

controlled, but extreme system scale makes it difficult to do so (too much data, and/or too many 
“hops” to get data from one part of system to another)

• Solution
– Integrate scalable, distributed data store with publish and subscribe service in a Global Information 

Bus (GIB)
– Interface with Hobbes Leviathan

node-level resource manager

– Recent progress
– Defined important GIB use cases

– System boot
– Launch application
– Respond to application failure
– Respond to application termination

– Designed and began pilot implementation of integration of distributed data store based on Riak
open source database, BEACON publish-subscribe software from ARGO project, and Leviathan

• Impact
– Supports monitoring and control of a large number of system software components without 

excessive application intrusion
– Usable by both Hobbes and ARGO projects
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mini-ckpts:	Surviving	OS	Failures	in	Persistent	Memory

§

• Problem
– A failure of the operating system (OS) causes a failure of

an otherwise healthy HPC application

• Solution
– Execute the application in persistent memory (PRAMFS

in DRAM) that is able to survive OS failures and reboots
– Track OS state used by the application and MPI for recovery
– Rejuvenate (warm reboot) the OS in case of a failure
– Restore tracked OS state used by the application and MPI
– Transparently continue to execute the application in

persistent memory without loss of state/progress

– Recent results
– Prototype implementation supports OpenMP and

MPI applications with certain limitations
– OS rejuvenation and recovery takes 3-6 seconds
– Failure-free runtime overhead is of 3-5% for a

number of key HPC workloads
• Impact

– First solution that transparently offers OS failure tolerance without loss of state/progress
– Transparently handling OS failures locally reduces the need for global checkpoint/restart
– Latent OS errors that have not resulted in a failure can be cleared by rejuvinating the OS
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