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DEGAS Project: Impact of advances in data Structures and 
RunNme Support for Irregular Data-Intensive ApplicaNons


• Distributed hash table

•  ApplicaNons: HipMer (genomics)


•  Irregular data exchange

•  ApplicaNons: AMR, HPGMG 


•  Irregular global matrix update

•  ApplicaNons: NWChem, seismic tomography


• Distributed work queue

•  ApplicaNons: NWChem, Hartree-Fock


• Dynamic task graph

•  ApplicaNons: Sparse symmetric matrix solver
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Speedups	

720x	

1.2x	

6x	

1.2x	

2x	



D-TEC Project: Impact of advances on DSL technologies, 
compilers and runNme systems


•  AMR Shi- Calculus DSL with ROSE/Polyopt

•  7.9x for 3D 125 pts stencil

•  7.3x for 2D 81 pts stencil


•  Halide DSL

•  4.25x for MiniGMG

•  1.8x on GPU for HPGMG  


•  Bamboo 

•  1.27x in 32K size for algebraic mulNgrid

•  1.29x with 96K grid cells for 3D stencil


•  LULESH with X10

•  1.12x beeer performance

•  40% fewer lines of code  


•  Global-View Resilience (GVR)

•  85% parallel efficiency on 1K processes with 

less than 2% code change




Traleika Glacier Project: The Open Community RunNme 
So-ware Suite and its Impact on ApplicaNons


•  ApplicaNons: Full set of DOE mini-apps and the 
full app atmospheric circulaNon, Tempest:


•  Tempest (!!)


•  SCF from NWCHEM 

•  CoMD 

•  HPCC and HPCG kernels 

•  Lulesh (mulNple versions) 


•  miniAMR

•  HPGMG 

•  Genomics Smith-Waterman  


•  Full OCR API supported on real hardware and is 
exploited by these tool chains 


•  C library, C++library

•  CnC on OCR, Hierarchically Tiled Arrays (HTA) on 

OCR

•  Compiler generaNon of OCR calls (R-Stream)


•  Habanero-C language on OCR 
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Please	see:	
hEps://xstack.exascale-tech.com/wiki/index.php/
Main_Page#Traleika_Glacier_Research_Products	and	
hEps://xstack.exascale-tech.com/wiki/index.php/
Traleika_Glacier_SoPware_Releases		

for	details,	products	and	research	
successes	
	



XPRESS Project: impact of exascale runNme support (HPX)


•  N-body SimulaNon


•  Mini-Ghost: Boundary Exchange Mini-app


•  Kernels: Stream benchmark              Matrix 
transposiNon


•  Distributed GPU work





•  Lulesh: Shock Hydrodynamics


•  DSEL and MTL for HPX

•  Same Portable code GPU / CPU 





•  Photon: Integrated CommunicaNon Library








Comparisons/Results 
1.4x over MPI (16,384 cores) 

1.13x	over	MPI+OpenMP		
(1024	cores) 

1.4x over OpenMP  
2.5x over MPI+OpenMP 

 
1.5x over native CUDA 

on 16 GPUs 
 

1.2x over MPI on Cori (128 cores) 
Same as MPI on Cori (4k cores)   

 
Same as MPI (256 cores) 

	
1.34x	for	16	byte	puts	
1.37x	for	16	byte	gets	
over	MPI-3	one-sided	

 
 



PIPER Project: Impact of PIPER Technology on …


... ApplicaNon Performance


... The ECP/ATDM SW Stack


... ApplicaNon Development


... Advances in R&D
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MemAxes/Mitos	&	
Caliper	

	

HPCToolkit	Facility	Monitoring	
Integra1on	

Tool	APIs	
OMPT/D,	MPI	

Dyninst	
MRNet	

•  Ac1ve	Harmony+Caliper	auto-tuning	
converged	40%	faster	on	Lulesh	

•  Blame	Data	Centric	profiling	of	a	high-
level	parallel	language	led	to		
38-56%	speedup	

•  Network	boEleneck	analysis	on	
NWChem	led	to	20%	speedup	

	

•  Caliper	has	been	
integrated	into	the	
hypre	solver	library	
and	LLNL	IC	codes	

•  New	tools	interfaces	
have	started	to	become	
widely	used,	providing	users	with	
cri1cal	informa1on	during	development	

	

•  Tool	integra1on	
between	PIPER	
components	

•  The	PALM		
Modeling	Toolkit	

•  Networks	and	
Conten1on	Analysis	

	



X-TUNE Project: Autotuning for Exascale


Domain-specific	and	standard	compiler	transforma3ons	combined	with	
autotuning	achieve	high	performance	and	improve	programmer	produc3vity.	
MoIfs	 Impact	

Solver,	7pt	GSRB	variable	coefficient	stencil,	
&	125pt	Jacobi	constant	coefficient	stencil	
Speedup	over	reference	(CPU):																		3x									
Reduc1on	in	lines	of	code:																						>10x	
Performance	portability:	Outperforms	
manually-tuned	code	on	CPU	and	GPU		
High	performance:	Near	roofline	model	
bound	
Scalability:	Demonstrated	on	1K	nodes	

Speedup	(GPU)	over	OpenMP	(CPU):				1.5x	
Speedup	over	tuned	OpenACC:														2.9x	
Reduc1on	in	lines	of	code	:																		>100x	
Fully	automated:	Mathema3cal	formula	to	
high-performance	CUDA	
Performance	&	produc3vity:	Autotuning	
essen3al	even	for	OpenACC	code	

STENCILS	&	GEOMETRIC	MULTIGRID	

TENSOR	CONTRACTION	&	SPECTRAL	ELEMENT	

miniGMG	benchmark,	proxies	the	MG	solves	
in	BoxLib/Chombo	codes	(ExACT)	

Nekbone	benchmark,	proxies	Nek5000	(CESAR)	
Other	relevant	applica1on:	NWCHEM		



Corveee Project: Dynamic Analysis for Program VerificaNon 
and OpNmizaNon


•  Scalable data race detector for PGAS languages 

•   50% overhead at 8K cores , 200X faster than commercial tools 


•  EliminaNng redundant synchronizaNon

•  NWChem -> 14% speedup at 2K cores


•  ExploiNng performance variability for energy opNmizaNons in dynamic apps

•  NWChem – 20% energy savings at 2K cores


•  Dynamic program analysis for communicaNon opNmizaNons

•  HPGMG  - 65% less Nme spent in communicaNon


•  FloaNng point reproducibility

•  ReproBLAS - 1.2x to 3.2x slowdown vs. fastest non-reproducible code 


•  FloaNng point precision tuning

•  lowered precision in Gnu ScienNfic Library, up 40% speedup 


Performance Analysis and Optimizations of NWChem

• High-performance 
computational chemistry code 
✴ Flagship DOE chemistry software 
✴ Developed at PNNL, LBL 

• 60K downloads world wide 

• 200-250 scientific application 
publications per year 

• Over 6M LoC, 25K files 

• Internal tasking model, memory 
management, and application 
checkpoint/restart. 

• Execution on 100K+ processors
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NWChem

credit:nwchem-sw.org
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Figure 4: SemCache++ Computation scheduling

As in Song et al., the computation is scheduled by (conceptually)
distributing C’s submatrices to the N GPUs by dividing the grid of
submatrices evenly by rows. Tasks that compute each submatrix of
C are then scheduled on the appropriate GPU. Independent tasks
are assigned to different streams on the GPU, allowing the compu-
tation of one C submatrix to be overlapped with communicating
the operands from B for the next task. Figure 4 shows how this
pipelining can hide communication overheads.

Note that once the computation is completed, each GPU holds a
row of A’s submatrices and all of B. These submatrices remain on
the GPUs until another device wants the data. If subsequent calls
use the same matrices, mapping tasks to the appropriate GPUs can
avoid communication.

For less compute intensive BLAS routines like level 1 and 2, a
simple decomposition can be used. Each matrix can be split by
rows into multiple sub-matrices. The number of sub-matrices is
equal to the number of GPUs. Each GPU performs part of the
computation. Sending the data to the GPU can be pipelined but it
has little effect on the performance since the percentage of commu-
nication is much higher than the computation.

4.2 SemCache++ Directives
SemCache++’s API for identifying which computations a task

needs is similar to the API defined in SemCache [2], extended
to support multiple GPUs. SemCache++ requires that the pro-
grammer to specify the number of GPUs using the API method:
SemCacheDeviceSelect(devicesNumber,deviceIds).
As in SemCache, readGPU is used to indicate to SemCache++
that a region of memory (in this case, a submatrix) will be read
during a GPU task; the only difference is that in SemCache++, the
GPU that will read the submatrix must be identified. Analogously,
writeGPU is used to indicate that a submatrix was modified by
a particular GPU after a task, potentially triggering invalidation of
the submatrix on other GPUs or on the CPU.

Because it is common to distribute the entire matrices at once,
SemCache++ also provides aggregate versions of readGPU and
writeGPU that operate over a whole matrix, decomposing and
distributing the matrix across the GPUs. These aggregate functions
automatically decompose a matrix into multiple submatrices and
distribute the submatrices by rows or columns to the GPUs. If the
submatrix requires further decomposition, it is decomposed into
N

2 submatrices. Different decomposition and distribution algo-
rithms exist in SemCache++. Since the decomposition algorithms
are not tightly coupled with SemCache++, new algorithms can be
easily defined and used. DecomposeRow and DecomposeCol

1 SemCacheDgemm (TRANSA, TRANSB,M, N, K, ALPHA,
2 A,LDA, B , LDB, BETA, C ,LDC) {
3 / / A s t o r e d on CPU i n memory range [A , A+(M⇤K⇤8) )
4 / / A w i l l be decomposed and s e n t t o m u l t i p l e GPUs , i t s

s t a t e w i l l be " S "
5 en t ryA = readGPU (A, M, K, DecomposeRow )
6
7 / / B s t o r e d on CPU i n memory range [B , B+(K⇤N⇤8) )
8 / / B w i l l be decomposed and s e n t t o m u l t i p l e GPUs , i t s

s t a t e w i l l be " S "
9 en t ry B = readGPU (B , K, N, DecomposeCol )

10
11 / / C s t o r e d on CPU i n memory range [C , C+(M⇤N⇤8) )
12 / / I f BETA!=0 , C w i l l be decomposed and s e n t t o m u l t i p l e

GPUs , i t s s t a t e w i l l be " S "
13 en t ry C = readGPU (C , M, N, DecomposeRow )
14
15 f o r e a c h GPU{
16 f o r e a c h s t r e a m {
17 / / Per form c o m p u t a t i o n on s u b m a t r i x
18 cublasDgemm ( s t ream ,
19 TRANSA, TRANSB, A t i l e s , B t i l e s , K, ALPHA,
20 en t ryA . subRecord . gpu_s ,LDA,
21 en t r yB . subRecord . gpu_s , LDB, BETA,
22 en t r yC . subRecord . gpu_s ,LDC)
23
24 / / I s s u e s y n c h r o n i z a t i o n e v e n t f o r s u b m a t r i x C
25 cudaEven tRecord ( en t r yC . subRecord . sync_even t , s t r e a m ) ;
26 }
27 }
28 / / C was w r i t t e n by cublasDgemm
29 / / Each C b l o c k s t a t e w i l l be upda ted t o GPU o n l y "G"
30 writeGPU (C , M, N, DecomposeRow )
31 }

Figure 5: Pseudocode of SemCache++ matrix multiply
(DGEMM)

distribute submatrices by rows and columns, respectively. Figure 5
shows how these aggregate functions can be used to manage sub-
matrices for matrix multiply.

Inside the readGPU call, a lookup in the caching directory is
performed using the start and end address on the CPU and the trans-
lation record is returned if found. If data does not exist on the GPU,
the matrix is decomposed using the specified decomposition algo-
rithm and sent to multiple GPUs asynchronously as described pre-
viously. If data already exist on the device, each submatrix record
is inspected as follows: If a submatrix already resides on the des-
ignated GPU, no communication is necessary. If the submatrix is
not valid or not on the designated GPU, a synchronization event
is issued to ensure that the submatrix is up-to-date, communica-
tion is performed and the directory state is updated appropriately.
readGPU also page-protects the CPU page(s) containing the ma-
trix as read-only, as discussed in Section 3.3.

Pinned memory is used to allow overlapping transfers to multiple
devices in parallel, it also allows concurrent communication in both
direction on Fermi GPUs. Pinned memory allocates page-locked
(non-swappable) memory which enables a DMA on the GPU to
request transfers to and from the host memory without the involve-
ment of the CPU.

Once all the data is transferred, the individual tasks are executed.
Note that all of these kernel invocations occur asynchronously, and
hence can be executed simultaneously (there are no dependences
in DGEMM). However, because subsequent library calls might use
the matrix C, after each task that computes C, cudaEventRecord
is called on the submatrix’s synchronization event so that later tasks
wait until the submatrix is computed.

Finally, writeGPU changes the state of all C submatrices to
GPU modified (G). To ensure that CPU accesses to C wait until
the computation is complete and then transfer data back from the
GPUs, writeGPU changes the page protection on C to no access.

SLEEC Project: SemanNcs Rich Libraries for EffecNve 
Exascale ComputaNons


•  OpNmized scheduling for recursive domain decomposiNon

•  ApplicaNons: ComputaNonal mechanics, peridynamics

•  PublicaNons: ICS 2013


•  Domain-aware parNNoning strategies

•  ApplicaNons: Recursive coupling applicaNons 

•  PublicaNons: IJNME 2016 (submieed)


•  SemanNcs-aware mulN-accelerator offloading

•  ApplicaNons: Heterogeneous apps (e.g., Jacobi)

•  PublicaNons: ICS 2013, ICS 2015


•  SemanNcs-based opNmizaNons for CnC

•  ApplicaNons: LULESH

•  PublicaNons: WolfHPC 2015, LCPC 2015
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Speedups	
2.5x	

11x	

120x	

regions of the physical system. Figure 9 shows the three
meshes after partitioning, as seen from the various colors.

(a) Example of a Partitioned Cube
Mesh

(b) Example of a Partitioned Rocket
Mesh

(c) Example of a Partitioned Stargrain
Mesh

Figure 9: Visualization of Finite Element Mesh
Models

6.1 Cost model validation
To validate our cost model, a set of 500 randomly generated
coupling trees was used to represent a sample of the entire
space of coupling trees. These trees are created by start-
ing with all subdomains in separate subtrees and randomly
selecting two subtrees to be coupled together until the full
tree is obtained. Note that this random coupling means that
occasionally two subdomains that do not share an interface
will be coupled. This schedule is mathematically and seman-
tically correct: the final solution will be computed correctly.
Nevertheless, such coupling orders are nonsensical from a
performance perspective, as there is no benefit in reduced
work to be gained from coupling subdomains that are not
adjoining.
The rocket input shown in Figure 9(b), partitioned into a

32 subdomain mesh (as a sample input), was used to explore

the space of trees. Figure 10 illustrates the correlation of
our cost model with the actual runtimes for solving the 32
subdomain mesh on single and multiple threads. For various
number of cores, actual runtimes are plotted against the
projected cost of the corresponding trees. The results show
that the correlation between the projected cost and expected
runtime has an average correlation coe�cient of 0.77–0.85
for single and multiple threads. We estimate the parallel
costs using the same sequential model. We justify that the
parallel runtime correlates with total work during parallel
execution. Although we see that correlation does decrease
for higher number of threads, our cost model does strongly
reflect the execution time of the TreeSolve code. For the
remaining test inputs, the cost model shows similar results
with high correlation.

(a) 1 Core (b) 2 Cores

(c) 4 Cores. (d) 8 Cores.

Figure 10: Rocket: Cost vs Runtime Correlation of
500 Random Trees

6.2 Performance comparisons
We next compare the execution times for running our heuris-
tics on our three testing inputs. Given each partitioned
mesh, our heuristics generate new coupling orders to solve
each problem, subject to multiple timescales. In addition
to our domain-specific heuristic DS, we evaluate the cost-
agnostic tree CA and the Default DT, which is based on the
initial METIS numbering. As described in Section 4.2, DT
serves as a baseline; the initial coupling schedule produced
after METIS is used to partition the initial mesh into sub-
domains. This coupling schedule also serves as the input
to our inspector-executor system. CA uses a top-down ap-
proach to produce a new tree, but does not incorporate the
domain-specific cost models, while our DS heuristic refines
the top-down approach by incorporating knowledge of leaf
solve and coupling costs. For each input, we evaluate all
three schedules.
Figure 11 shows a CDF of the runtimes for running the

32 subdomain rocket input for various numbers of threads.
We compare the execution times of DS, CA, and DT, along
with the 500 randomly generated trees for single and mul-
tiple threads. Here we observe that DS outperforms all the
trees that we tested and we achieved a significant speedup
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(a) BN: 36552 elements (b) NF: 28960 elements

(c) DF: 42800 elements (d) CF: 100720 elements

Figure 8. Input meshes used for evaluation: (a) BN: Beam with a notch (same as Figure 1 zoomed in at the
notch where the red colored elements represent the small time-step domain); (b) NF: One-eighth symmetric
section of a cube with a needle shaped inclusion; (c) DF: One-eighth symmetric section of a cube with a
disk shaped inclusion; (d) CF: Cuboid constructed by joining three cubes end-to-end, containing two needle

shaped and one disk shaped inclusions.

the runtime decreases up to a certain limit after which it starts to increase again. This is because
the cost of solving a subdomain is of order n2 and with large subdomain size (fewer number of
subdomains), the runtime is very high. On the other hand, with small subdomains, the resulting
interface size between the subdomains is comparable to the size of the subdomains themselves,
which leads to more time spent on coupling operations at the interface, hence overall poor
performance.

Another factor that controls the runtimes is the timescale ratio between the higher and
lower timescales. The relationship between number of subdomains and timescale ratio is very
unpredictable. This can be observed from sudden increases and decreases in runtimes, especially
in the NMETIS case. For example, in the case of NMETIS with less number of subdomains, small
sized elements end up in each of the subdomains, resulting in timescale ratio of 1, i.e., running
the entire problem at the lower timescale. With large number of subdomains, the timescale ratio is
high, leading to fewer TreeSolve calls but also a large number of elements at the lower timescale.
Since lower timescale subdomains have to be solved multiple times (depending on the timescale
ratio m) for each call of TreeSolve, the runtime is usually high. However, in some cases, further
increasing the number of subdomains does not significantly increase the timescale ratio but reduces
the runtime at lower timescales through addition of more subdomains. With this erratic behavior, it is

Copyright c� 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
Prepared using nmeauth.cls DOI: 10.1002/nme
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struct lulesh_context:public

context<lulesh_context>{

// Step Collections

step_collection<compute_dt>

step_compute_dt;

step_collection<reduce_force>

step_reduce_force;

...

// Item Collections

// per node items

item_collection<pair,vector>force;

item_collection<pair,vertex>position;

item_collection<pair,vector>velocity;

// per element items

...

// Tag Collections

tag_collection<pair>iteration_node;

tag_collection<pair>iteration_element;

tag_collection<int>iteration;

...

// Producer Dependencies

step_compute_dt.consumes(dt);

...

// Consumer Dependencies

step_compute_dt.produces(dt);

...

Figure 3: LULESH CnC Specification

tiling help alleviate the e�ects of excessive synchronization
and scheduling costs without modifying the underlying pro-
gram semantics. Although CnC has built-in tuners, almost
none of these tuners alter the organization of the algorithm
itself; most tuners operate at a much lower level to benefit
the CnC runtime with things like memory usage, garbage
collection, serialization/synchronization, and thread man-
agement. The closest alternative is the tag-range tuner, but
it cannot handle step fusion and other optimizations such as
removing redundant get operations from shared dependen-
cies. The e�ects of our fusion and tiling techniques comple-
ment the back-end tuners provided in CnC. In the following
sections, we explore the legality of fusion and tiling and how
each technique a�ects performance in LULESH application.

3.2 Step Fusion
Step fusion is an e�ective way to serialize multiple steps in

a CnC program without altering the computation. The pri-
mary restriction on fusion is that steps remain “step-like”—
conceptually, once a step receives all of its inputs, it must
be able to run to completion.

Given multiple step collections, these steps can be legally
fused if and only if both step collections are prescribed using
identical tags and all dependencies between fused steps are
computed in previous steps generated by the same tag. Step
fusion is illegal for steps prescribed from di�erent tags, or if
the resulting fused step would become a coroutine—in other
words, if the execution of the step would require interleaving
with another step, violating the step-like property.

In certain cases, data dependencies may come from step
instances generated by di�erent tags, such as a reduction
operation, where a current step needs recently computed

data from multiple instance of a previous step. Fusion is
not legal between these two steps because we only serialize
the computation for step instances of a single tag, not all
instances of a previous one. When multiple steps are fused,
data dependencies that exist between fused steps can be
expressed as temporary data in the new step computation.
The set of get data which are consumed from from each
step fused are unioned to form a new set of dependencies
for the fused step. In the collection space, it reduces the
number of items in the step collections, but the number of
data dependencies will likely increase per step.

Figure 4: Fused LULESH Algorithm

We are able to apply step fusion in the CnC-LULESH
program to reduce the number of step collection items from
13 to 5. Figure 4 highlights the steps in the algorithm where
it is legal to fuse step collections. The leftmost node, Com-
pute Delta Time requires its own space of tags per iteration
due to the delta time calculation. The other steps are ei-
ther in the nodal iteration space (red) or element iteration
space (blue/green), each requiring separate tag collections.
All the steps corresponding to the node tags, and most of
the steps associated with the element tags can be fused.
The two independent partial force calculations, shown in
green, can be fused because they are independent and use
the same element tags. They cannot be combined with the
steps highlighted in blue even though they share the same
tags because the force calculations depend on a delta-time
calculation that is a global check that occurs at the begin-
ning of each iteration and has a separate tag. The spatial
computations that are prescribed by node tags can all be
fused, reducing the three node steps into a single step, high-
lighted in red. For the rest of the element computation,
fusion can reduce the remaining 6 element routines into 2
fused routines, as shown in blue in Figure 4. During the the
viscosity step, there is a gather operation that requires data
dependencies computed in a prior step using multiple di�er-
ent tags, implying a synchronization barrier and preventing
those steps from legal fusion.

Initially, we believed using the consumer/producer depen-
dencies expressed in the CnC specification would be su�-
cient to determine the legality of step fusion. However, that
itself is not enough because of there can be cases where de-
pendencies span across multiple instances of the same step
prescribed from di�erent tags, such as the element viscosity
operation. Data items in CnC programs are written and
read in an atomic fashion, thus naturally enforcing synchro-
nization between dependencies. Step fusion alters execution



GVR Project: Robust Resilience for High Error Rate 
Environments/Systems


•  Expand ABFT from immediate to Latent and 
Silent Errors at extreme scale


•  Efficient Versioning and Recovery library

•  High performance, scalable versioning (NVM)


•  Deep App Studies & New Recovery Types

•  Monte Carlo: OpenMC, ParNcle: ddcMD,                   

AMR: Chombo, Iter: PCG/Trilinos.

•  Rollback, AdapNve, and Fwd Approx Recovery

•  16,384 Rank experiments: Scalable & High Performance

•  PracNcal: Only Localized Code Change


Sept	2016	 XStack	Program	-	GVR	 10	

GVR Model and Interfaces 

March 15, 2015 2015 SIAM Conference on Computational Science and Engineering 
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Put$ Get$ Put$

Array allocation/creation 
GDS_alloc(), GDS_create() 

Data access and consistency 
GDS_put(), GDS_get(), GDS_acc() 
GDS_fence(), GDS_wait() 
GDS_compare_and_swap() 
Version creation and navigation 
GDS_version_inc() 
GDS_get_version_number() 
GDS_move_to_prev() 
GDS_move_to_next() 
GDS_move_to_newest() 

GDS_V1$ GDS_V2$

/*#Add#matrices#C#=#A#+#B#*/#
GDS_alloc(2#/*24D*/,#counts,#min_chunk,#GDS_DATA_DBL,#
##GDS_PRIORITY_HIGH,#GDS_COMM_WORLD,#MPI_INFO_NULL,#&gds_A);#
/*#Same#for#gds_B#and#gds_C#*/#
/*#Initialize#A#and#B#*/#
GDS_get(my_A,#ld,#lo,#hi,#gds_A);#
GDS_get(my_B,#ld,#lo,#hi,#gds_B);#
GDS_wait(gds_A);#GDS_wait(gds_B);#
for#(j#=#0;#j#<#N;#j++)#my_C[j]#=#my_A[j]#+#my_B[j];#
GDS_put(my_C,#ld,#lo,#hi,#gds_C);#
GDS_fence(gds_C);#

/*#Main#computation#loop#*/#
do#{#
##sprintf(label,#“version#%d”,#i);#
##do_computation(gds);#
##GDS_version_inc(gds,#1,#
####label,#strlen(label));#
}#while#(!converged);#

/*#Roll#back#from#a#correct#version#*/#
GDS_descriptor_clone(gds,#&gds_clone);#
do#{#
#6GDS_move_to_prev(gds_clone);#
}#while#(verify_contents(gds_clone)#!=#OK);#
GDS_get(buff,#ld,#lo,#hi,#gds_clone);#
GDS_put(buff,#ld,#lo,#hi,#gds);#
GDS_free(&gds_clone);#

A.		1000’s	of	Fast	versions	(NVM,SSD)	

B.		Scales	well,	demonstrated	>16K	Ranks	

GVR Scaling and High Performance 
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Using Global View Resilience (GVR) to add Resilience to
Exascale Applications

Hajime Fujitaú, Nan Dunú, Aiman Fangú, Yan Liuú, Zachary Rubensteinú, Andrew A. Chienú,†,
Pavan Balaji†, Kamil Iskra†, Wesley Bland‡, Andrew Siegelú,†

úDepartment of Computer Science, University of Chicago
†Argonne National Laboratory ‡Intel Corp

Global View Resilience
Global View Resilience (GVR) is a library that exploits a global view data, and adds
reliability to globally visible data.
Key features:
• Multi-version, multi-stream distributed array: preserves critical application data with

fine-grain manner, enables powerful recovery from complex errors such as latent
errors.

• Open resilience: maximizes recoverable errors with cross-layer partnership, leverages
application-level error handling with unified error handlers.

GVR is an open-source project. For more information and download, please refer to
GVR Documenation [? ] and http://gvr.cs.uchicago.edu.

Multi-version, Multi-stream, Open Resilience
Global View
• Exploits a global-view data model, which enables irregular, adaptive algorithms and

exascale variability
• Provides an abstraction of data representation which o�ers resilience and seamless

integration of various components of memory/storage hierarchy

Multi-version, Multi-stream
• Computation phases form "versions" of data
• GVR array can preserve multiple versions upon application’s request
• Application can retrieve arbitrary version for flexible recovery
• Applications can control the versioning frequency of individual data structure based

on its priority, thus forming multi-stream.

Open Resilience
• Unified Error Signaling and Handling
• Framework for Flexible Cross-layer Error Handling

Unified Error Handling/Open Resilience 
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Handler Registration 
GDS_create_error_pred() 
GDS_register_global_error_handler() 
GDS_register_local_error_handler() 

 
Resuming 
GDS_resume_global() 
GDS_resume_local() 
 
Error Signaling 
GDS_raise_global_error() 
GDS_raise_local_error() 
 

Error Matching 
GDS_create_error_pred() 
GDS_create_error_pred_term() 

GVR$

Error A   Error B Error D Error C 

Handler 1 Handler 3 Handler 2 Handler 4 

Applica4on$

System$

GVR$

Error A 
(e.g. L1 cache error) 

Error B 
(e.g.  main mem error) 

Handler 1 

GVR$

Error A 

Handler 1 

Generalization Specialization 

Error B 

GVR$

Handler 1 
Handler 2 

Error A 

APIs and OpenMC Example
GVR Model and Interfaces 
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Put$ Get$ Put$

Array allocation/creation 
GDS_alloc(), GDS_create() 

Data access and consistency 
GDS_put(), GDS_get(), GDS_acc() 
GDS_fence(), GDS_wait() 
GDS_compare_and_swap() 
Version creation and navigation 
GDS_version_inc() 
GDS_get_version_number() 
GDS_move_to_prev() 
GDS_move_to_next() 
GDS_move_to_newest() 

GDS_V1$ GDS_V2$

/*#Add#matrices#C#=#A#+#B#*/#
GDS_alloc(2#/*24D*/,#counts,#min_chunk,#GDS_DATA_DBL,#
##GDS_PRIORITY_HIGH,#GDS_COMM_WORLD,#MPI_INFO_NULL,#&gds_A);#
/*#Same#for#gds_B#and#gds_C#*/#
/*#Initialize#A#and#B#*/#
GDS_get(my_A,#ld,#lo,#hi,#gds_A);#
GDS_get(my_B,#ld,#lo,#hi,#gds_B);#
GDS_wait(gds_A);#GDS_wait(gds_B);#
for#(j#=#0;#j#<#N;#j++)#my_C[j]#=#my_A[j]#+#my_B[j];#
GDS_put(my_C,#ld,#lo,#hi,#gds_C);#
GDS_fence(gds_C);#

/*#Main#computation#loop#*/#
do#{#
##sprintf(label,#“version#%d”,#i);#
##do_computation(gds);#
##GDS_version_inc(gds,#1,#
####label,#strlen(label));#
}#while#(!converged);#

/*#Roll#back#from#a#correct#version#*/#
GDS_descriptor_clone(gds,#&gds_clone);#
do#{#
#6GDS_move_to_prev(gds_clone);#
}#while#(verify_contents(gds_clone)#!=#OK);#
GDS_get(buff,#ld,#lo,#hi,#gds_clone);#
GDS_put(buff,#ld,#lo,#hi,#gds);#
GDS_free(&gds_clone);#

main() { 
   
  GDS_alloc(tally_array); 
 
 
 
 
 
  GDS_register_global_error_handler( 
    gds, predicator, do_recovery()); 
 
  foreach (batch, particle) { 
    ... 
    process_next_event(); 
    if (tally_this_event()) { 
      foreach (scoring_functions) { 
        score = scoring_func(); 
        GDS_acc(score, score_index, 
         ..., MPI_SUM, tally_array); 

  } 
    } 
     
    if (has_error(err_locs, &n_err)) 
       do_recovery(err_locs, n_err); 
    GDS_version_inc(tally_array, 1); 
  } 
}  

Full Rollback:
full_rollback() { 
  // move to previous good version 
  GDS_move_to_prev(tally_array_old); 
 
  // Redo contaminated batches 
 
  GDS_resume_local(tally_array); 
} 

Main%Computa,on% Error%handlers%

Forward Error Correction:
forward_correction(gds, err_locs) { 
  GDS_move_to_next(tally_array_old); 
  GDS_get(&bad_val, ..., err_loc,   
          tally_array_old); 
  delta = val – bad_val; 
  GDS_acc(&delta, ..., err_loc, MPI_SUM, 
          tally_array_old); 
 
  GDS_resume_local(tally_array); 
} 

Register(for(errors(with(
•  Any(lost(data(range(in(an(array(

do_recovery() { 
  if (correctable) 
    forward_correction(); 
  else 
    full_rollback(); 
} 

Flexible Error Recovery
Flexible Recovery in Applications (1/2) 

!  Preconditioned Conjugate 
Gradient linear system 
solver for Ax=B  

!  Parallel classical 
molecular dynamics code 
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Sparse Matrix only rollback A 

version(

version(

Direction Vector 

Solution Vector 

error  
Occur in A 

version(

Multi-stream Recovery 

rollback 

error  
detected 

version(

version(

corrupted(
version(error  

occur 

Latent Error Recovery 

Flexible Recovery in Applications (2/2) 

!  Monte Carlo neutron 
transport simulation 

! Tools of solving PDE 
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version(

corrupted(
version(error  
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state(
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version(

Forward Recovery (Compensation) 

rollback 

error  
detected 

version(

version(

corrupted(
version(error  

occur 

Latent Error Recovery 

Version arithmetic 

Code Changes
% Application Leverage Change Software

Application Changed Lines of Code Global View Architecture
OpenMC <2% 30 K Yes No
PCG/Trilinos <1% 300 K Yes No
ddcMD <0.3% 110 K Yes No
Chombo <1% 500 K Yes No

Evaluation
Versioning Overhead

Versioning Overhead 
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OpenMC @ 1K nodes 
50 batches, 50 sec/batch 
Optimal versioning interval: 10 
batches 

Scaling and Performance

GVR Scaling and High Performance 
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Summary & Future Work
GVR is a library that enables the construction of portable, resilient applications. GVR
can be added to large applications with little e�ort (< 2% code changes), and support
flexible recovery approaches. GVR versioning is low cost (< 2% runtime) when adding
to an application at today’s error rates.
Future works include: incorporating GVR into high level programming models and tools,
further optimized version implementation, including e�cient di�erences, compression,
and exploitation of NVRAM.
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Vancouver: Improving Programmability of 
Contemporary Heterogeneous Architectures


•  Understanding novel heterogeneous architectures

•  SHOC Benchmarks

•  ApplicaNon engagement and refactoring


•  Developing languages and compilers to facilitate portability

•  OpenARC compiler infrastructure for GPU, Xeon Phi, FPGAs

•  KLAP – CUDA GPU Dynamic parallelism compiler


•  Building autotuning frameworks that hide complexity

•  Tanagram – kernel synthesis


•  Designing scalable performance analysis and modeling 
tools 


•  Scalable performance tools for heterogeneous systems - Tau

•  AutomaNcally generaNng performance models - COMPASS


•  Deployed open-source tools
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ARES: Abstract RepresentaNons for the Extreme-Scale Stack


•  Create a universal high-level intermediate representaNon

•  HLIR defined that includes heterogeneous compuNng and 

complex memory hierarchy concepts


•  Develop prototype frontends

•  OpenACC and OpenMP offload frontends developed and 

deployed


•  Develop prototype opNmizaNon engine for HLIR

•  OpNmizaNon engine recognizes and opNmizes 


•  Develop back-end compilaNon, based on LLVM

•  HLIR lowered to LLVM IR, gaining benefits of LLVM infrastructure


•  Demonstrate HLIR benefits on applicaNon examples

•  IMPACC, NVL-C, OpenACC2FPGA, FITL, etc.
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