

Locality Aware Concurrent Start for Stencil Applications

Sunil Shrestha¹, Joseph Manzano², Andres Marquez², John Feo² and Guang R. Gao¹ ¹University of Delaware ²Pacific Northwest National Laboratory

Introduction

- Old/New Story:
 - Abundant processing/Limited shared resources
 - Memory access latency a bottleneck
 - Tiling: Coarse grain Vs Fine Grain
- Stencils
 - Compute intensive,
 - Symmetric dependence / concurrent start
 - Diamond tiling an efficient solution
 - Exploiting inner parallelism difficult when hierarchically tiled.

for (t=0; t<T;t++) for (i=1; i<N;i++) A[t+1][i]=α*(A[t][i+1]β*A[t][i] + A[t][i-1])

NATIONAL LABORATORY

Introduction

Motivation

U.S. DEPARTMENT OF

- Can we do better than Diamond tiling?
- Can we improve inner parallelism without compromising locality
- Can we improve threads collaboration?

Contributions

- Exploiting locality of outer tiles without compromising inner parallelism:
- 1. Highly parallel tiling technique that exploits concurrent start at multiple levels.
- 2. Detailed analysis of such technique at different levels of the memory hierarchy.

Background

- The Polyhedral Model
 - Optimization framework for loop nests
 - Each loop iteration → lattice points inside polytopes
- Allows:
 - Arbitrary composition of transformations
 - Dependency analysis on a class of programs
- Disadvantages
 - Very complex and expensive algorithms

Background: Concurrent Start

- Conic Combination:
 - Given the set of vectors $x_1, x_2, x_3 \dots x_n$,
 - A conical combination is a vector of the form

$$\lambda_1 x_1 + \lambda_2 x_2 \lambda_3 x_3 + \dots + \lambda_k x_k$$

where 1<=i<=k and λ_i >=0

Condition for Concurrent start:

•Using hyperplanes representing a face and conical combination

 $\Phi^{=} \lambda_{1} \Phi^{1} + \lambda_{2} \Phi^{2} + \dots + \lambda_{2} \Phi^{k}$ where $\lambda_{i} \geq 0$

•Partial Concurrent Start: $\Phi = \lambda_1 \Phi^1 + \lambda_2 \Phi^2$

Pacific North

NATIONAL LABORATORY

Background: Tools

• PLUTO

- Polyhedral analysis tool
- Takes C code as input
- Uses CLOOG as for code generation
- Produces communication minimal OpenMP code
- CLOOG
 - Code generation tools
 - Takes domain and scattering function (scheduling) as input
 - Oblivious to dependencies
- Our Framework uses:
 - Uses L1 hyperplanes generated by PLUTO
 - Finds hyperplanes needed for jagged tiling
 - Modifies CLOOG file and generates code

Jagged Polygon Tiling

Jagged Polygon Tiling

Traditional Hierarchical Tiling

Jagged Hierarchical Tiling

Two level hierarchical Tiling with L1 HP : (1,1) and (1,-1) L2 HP : (1,0) and (0,1)

Two level hierarchical Tiling with L1 HP : (1,1) and (1,-1) L2 HP : (1,1) and (0,1)

Algorithm (step 1)

Algorithm (step 2 & 3)

Algorithm (step 4)

4. Tile for L2 using PLUTO:

Algorithm (step 5 & 6)

5. Perform Unimodular transformation on L1 supernode.

$\varphi T^1_{L1s} \to \varphi T^1_{L1s} + \varphi T^2_{L1s}$

6. Perform Unimodular transformation on L2 supernode:

 $\Phi T_{L2s}^1 \to \Phi T_{L2s}^1 + \Phi T_{L2s}^2$

Limitations of the framework

- . Parallelism is extracted using manual input (.cloog file is modified to generate the code). Can we do it automatically?
- 2. Framework uses parametric knobs to find best cases.

Fine-Grain Execution

- Thread Grouping
- Take advantage of outer tile(L2) locality.
- Uses low overhead
 atomic operation
- Hierarchical

Experimental Platform

TD: Tag Directory

- 61 cores, 1.1GHz with
 4 hyper-threads
- L1 Cache: 1 cycle
- Unified L2 Cache: ~12 cycles
- DRAM:~230 cycles)
- Shared ring L2 caches: 180-250 cycles

Intel Xeon Phi 7110P coprocessor

Applications and Sizes

Application	Size (N)	Size (T)
Heat-1d	1000000	10K
Heat-2d	11504x11504	2К
Heat-3d	480x480x480	100
Jacobi-2d	11504x11504	2К
7point-3d	480x480x480	100

Heat 2D: Level 1 Cache Misses

Heat 2-D

Read Miss ≡ Write Miss

Heat 2D: Remote Level 2 Cache Hits

Remote Read Hit ≡ Remote Write Hit

Heat 2D GFLOPS Comparison

Heat 3-D

Heat 3D: Level 2 Cache Misses Serviced by the Memory

Heat 3D: GFLOPS Comparison

Conclusion and Future Work

- Hierarchical tiling technique that improves locality and reuse.
- Collaborative view with grouping of threads.
- Orchestration of data movement among threads working in close proximity in time and space.
- Explore other multicore architectures.

Acknowledgement This research was supported in part by DOE ASCR XStack program under Awards DE-SC0008716, DE-SC0008717 (**Dynamic Adaptive X-Stack**)

Back up slides

Iteration Space Domain An Example

Background

- Hyperplane
 - (n-1) dimensional affine subspace in n dimensional space
- **Tiling Hyperplane** •
 - For source(s) and target(t): $\phi_{S_i}(t) \phi_{S_j}(s) \ge 0$ Dependencies are satisfied or can be satisfied within.
- Example •

Scheduling Hierarchical Tiled Domain

Background: Jagged Tiling for Pipeline Start

Heat 1-D

Heat 1D: Level 2 Cache Misses Serviced by the Memory

Heat 1D: Remote Level 2 Cache Hits

■ Remote Write Hit

Remote Read Hit

Performance (GFlops)

PLUTO OpenMP

Application	Balanced	Compact	Tile Size	Hierarchical
Heat-1d	106.59	107.05	4Kx4K	99.65
Heat-2d	122.42	122.78	16x16x256	109.78
Heat-3d	59.375 (180 ths)	57.22	3x3x2x480	27.91
Jacobi-2d	68.26	68.40	16x16x256	-
7point-3d	31.48	31.82	2x2x4x480	-

FineGrain Pthread

Application	Scatter	Compact	Tile Size	Gain
Heat-1d	115.95	111.77	1Kx2K / 4x4	8.31%
Heat-2d	131.47	134.95	16x32x256 / 4x4x2	9.91%
Heat-3d	61.73	74.168	1x2x4x480/4x4x2x1	24.91%
Jacobi-2d	67.94	72.22	16x32x256 / 4x4x2	5.58%
7point-3d	33.46	41.74	1x2x4x480/4x4x2x1	31.17%
				X

Pacific Northwest

NATIONAL LABORATORY

