
Locality Aware Concurrent Start for
Stencil Applications

Sunil Shrestha1, Joseph Manzano2, Andres Marquez2, John
Feo2 and Guang R. Gao1

1University of Delaware
2Pacific Northwest National Laboratory

Introduction
• Old/New Story:

– Abundant processing/Limited shared resources
– Memory access latency a bottleneck
– Tiling: Coarse grain Vs Fine Grain

• Stencils
– Compute intensive,
– Symmetric dependence / concurrent start
– Diamond tiling an efficient solution
– Exploiting inner parallelism difficult when

hierarchically tiled.

for (t=0; t<T;t++)
 for (i=1; i<N;i++)
 A[t+1][i]=α∗(A[t][i+1]-

β∗A[t][i] + A[t][i−1])

One-Level Tiling

Hierarchical-Level

Heat-1d

2

Introduction

• Motivation
– Can we do better than Diamond

tiling?
– Can we improve inner parallelism

without compromising locality
– Can we improve threads

collaboration?

for (t=0; t<T;t++)
 for (i=1; i<N;i++)
 A[t+1][i]=α∗(A[t][i+1]-

β∗A[t][i] + A[t][i−1])

L2 Tile 3

Contributions

Exploiting locality of outer tiles without compromising inner
parallelism:

1. Highly parallel tiling technique that exploits concurrent start
at multiple levels.

2. Detailed analysis of such technique at different levels of the
memory hierarchy.

4

Background

• The Polyhedral Model
– Optimization framework for loop nests
– Each loop iteration ➔ lattice points inside polytopes

• Allows:
– Arbitrary composition of transformations
– Dependency analysis on a class of programs

• Disadvantages
– Very complex and expensive algorithms

Convert to
Polyhedral

IR

Optimization
Framework

Code
generator

Original
Polytope

Opt.
Polytope

Original
Progra

m

Transforme
d

Program

5

Background: Concurrent Start

(1,-1) (1,1)

(1,0)

6

• PLUTO
– Polyhedral analysis tool
– Takes C code as input
– Uses CLOOG as for code generation
– Produces communication minimal OpenMP code

• CLOOG
– Code generation tools
– Takes domain and scattering function (scheduling) as input
– Oblivious to dependencies

• Our Framework uses:
– Uses L1 hyperplanes generated by PLUTO
– Finds hyperplanes needed for jagged tiling
– Modifies CLOOG file and generates code

Background: Tools

7

Jagged Polygon Tiling

H1 = NT * h
H2 = NI * (n*h –h)

Example:
When n = 2, NT = NI
Number of L1 tiles required to form L2

are equal (3x3, 4x4 …)

H1 H2
h n*h

T I

NT = Number of L1 tile in ‘T’ direction
NI = Number of L1 tile in ‘I’ direction

x y

y = n*x

n*h -h

t

8

When,
H1 = H2
NT = NI (n-1)

T1
T2

T3

I1

I2

I3

Jagged Polygon Tiling

Two level hierarchical Tiling
with
L1 HP : (1,1) and (1,-1)
L2 HP : (1,0) and (0,1)

Two level hierarchical Tiling
with
L1 HP : (1,1) and (1,-1)
L2 HP : (1,1) and (0,1)

Traditional Hierarchical
Tiling

Jagged Hierarchical
Tiling

9

Algorithm (step 1)
1. Given:

Tiling hyperplanes: Φ1,Φ2…Φm

L1 tile sizes : tL11, tL12 … tL1m

L2 tile sizes : tL21, tL22 … tL2m

Original Domain : Ds

10

Algorithm (step 2 & 3)
2. Tile for L1 using PLUTO:

Example:
Tiled Domain: 2TL1 <= t <= 2TL1
+1

 4IL1 <= i <= 4IL1 +3
3. Update Domain Constraint go get
such than

11

Algorithm (step 4)
4. Tile for L2 using PLUTO:

Example:

Tiled Domain: 3TL2 <= TL1+IL1 <= 3TL2 +2
 3IL2 <= IL1 <= 3IL2 +2

T
I

Tiled
Domain

12

Algorithm (step 5 & 6)
5. Perform Unimodular transformation on L1 supernode.

6. Perform Unimodular transformation on L2 supernode:

13

Limitations of the framework

1. Parallelism is extracted using manual input (.cloog
file is modified to generate the code). Can we do it
automatically?

2. Framework uses parametric knobs to find best cases.

14

Fine-Grain Execution

• Thread Grouping
• Take advantage of outer

tile(L2) locality.
• Uses low overhead

atomic operation
• Hierarchical

15

Experimental Platform

• 61 cores, 1.1GHz with
4 hyper-threads

• L1 Cache: 1 cycle
• Unified L2 Cache:

~12 cycles
• DRAM:~230 cycles)
• Shared ring L2

caches: 180-250
cycles

TD: Tag Directory

• Intel Xeon Phi 7110P coprocessor

16

Applications and Sizes

Application Size (N) Size (T)

Heat-1d 10000000 10K

Heat-2d 11504x11504 2K

Heat-3d 480x480x480 100

Jacobi-2d 11504x11504 2K

7point-3d 480x480x480 100

17

Heat 2-D

18

Heat 3-D

19

Conclusion and Future Work

• Hierarchical tiling technique that improves locality and reuse.

• Collaborative view with grouping of threads.

• Orchestration of data movement among threads working in close proximity
in time and space.

• Explore other multicore architectures.

Acknowledgement
This research was supported in part by DOE ASCR XStack program under Awards
DE-SC0008716, DE-SC0008717 (Dynamic Adaptive X-Stack)

20

Back up slides

Iteration Space Domain
An Example

for (i=1; i<n;i++) {
 for (j=1; j<n;j++){
 A[i][j]=A[i−1][j]+A[i][j−1];
 }
}

Stencil Example

Iteration space as a
System of Equations

Iteration Space as
Matrices

Graphical
Representatio

n of the
Iteration
Space

i

j

22

Background
• Hyperplane

– (n-1) dimensional affine subspace in n dimensional space

• Tiling Hyperplane
– For source(s) and target(t):
– Dependencies are satisfied or can be satisfied within.

• Example
(1,0)

(0,1)

(1,-1)

Not a legal
tiling
hyperplane

23

Scheduling Hierarchical Tiled Domain

Schedul
e:

for (t=0; t<T;t++) {
 for (j=1; j<N;j++){
 A[t+i][j]=α∗(A[t][i+1]-

β∗A[t][i] + A[t][i−1]);
 }
}

A Stencil Example

L1
HP
L2
HP

24

Background: Jagged Tiling for Pipeline Start

Two level hierarchical Tiling with
L1 HP : (1,0) and (0,1)
L2 HP : (1,1) and (0,1)

for (i=1; i<n;i++) {
 for (j=1; j<n;j++){
 A[i][j]=A[i−1][j]+A[i][j−1];
 }
}

HP: Hyperplane
(n-1) dimensional affine subspace
in n dimensional space

Two level hierarchical Tiling with
L1 HP : (1,0) and (0,1)
L2 HP : (1,0) and (0,1)

25

Heat 1-D

26

Performance (GFlops)
Application Balanced Compact Tile Size Hierarchical

Heat-1d 106.59 107.05 4Kx4K 99.65

Heat-2d 122.42 122.78 16x16x256 109.78

Heat-3d 59.375 (180 ths) 57.22 3x3x2x480 27.91

Jacobi-2d 68.26 68.40 16x16x256 -

7point-3d 31.48 31.82 2x2x4x480 -

Application Scatter Compact Tile Size Gain

Heat-1d 115.95 111.77 1Kx2K / 4x4 8.31%

Heat-2d 131.47 134.95 16x32x256 / 4x4x2 9.91%

Heat-3d 61.73 74.168 1x2x4x480/4x4x2x1 24.91%

Jacobi-2d 67.94 72.22 16x32x256 / 4x4x2 5.58%

7point-3d 33.46 41.74 1x2x4x480/4x4x2x1 31.17%

PLUTO OpenMP

FineGrain Pthread

27

