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Introduction
• Old/New Story:

– Abundant processing/Limited shared resources
– Memory access latency a bottleneck
– Tiling: Coarse grain Vs Fine Grain

• Stencils
– Compute intensive, 
– Symmetric dependence / concurrent start
– Diamond tiling an efficient solution
– Exploiting inner parallelism difficult when 

hierarchically tiled.

for (t=0; t<T;t++) 
  for (i=1; i<N;i++)
    A[t+1][i]=α∗(A[t][i+1]-

β∗A[t][i] + A[t][i−1])

One-Level Tiling

Hierarchical-Level

Heat-1d
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Introduction

• Motivation
– Can we do better than Diamond 

tiling?
– Can we improve inner parallelism 

without compromising locality
– Can we improve threads 

collaboration?

for (t=0; t<T;t++) 
  for (i=1; i<N;i++)
    A[t+1][i]=α∗(A[t][i+1]-

β∗A[t][i] + A[t][i−1])

L2 Tile 3



Contributions

Exploiting locality of outer tiles without compromising inner 
parallelism:

1. Highly parallel tiling technique that exploits concurrent start 
at multiple levels.

2. Detailed analysis of such technique at different levels of the 
memory hierarchy.
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Background

• The Polyhedral Model 
– Optimization framework for loop nests
– Each loop iteration ➔ lattice points inside polytopes

• Allows:
– Arbitrary composition of transformations
– Dependency analysis on a class of programs

• Disadvantages
– Very complex and expensive algorithms

Convert to 
Polyhedral 

IR

Optimization 
Framework

Code 
generator

Original 
Polytope

Opt. 
Polytope

Original 
Progra

m

Transforme
d 

Program
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Background: Concurrent Start

(1,-1) (1,1)

(1,0)
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• PLUTO
– Polyhedral analysis tool
– Takes C code as input
– Uses CLOOG as for code generation
– Produces communication minimal OpenMP code

• CLOOG
– Code generation tools
– Takes domain and scattering function (scheduling) as input
– Oblivious to dependencies

• Our Framework uses:
– Uses L1 hyperplanes generated by PLUTO
– Finds hyperplanes needed for jagged tiling
– Modifies CLOOG file and generates code

 

Background: Tools
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Jagged Polygon Tiling

H1 = NT * h
H2 = NI * (n*h –h)

Example:
When n = 2,   NT = NI 
Number of L1 tiles required to form L2 

are equal (3x3, 4x4 …)

H1 H2
h n*h

T I

NT  = Number of L1 tile in ‘T’ direction
NI = Number of L1 tile in ‘I’ direction

x y

y = n*x

n*h -h

t
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When,
H1 = H2
NT = NI (n-1)

T1
T2

T3

I1

I2

I3



Jagged Polygon Tiling

Two level hierarchical Tiling 
with 
L1 HP : (1,1) and (1,-1)
L2 HP : (1,0) and (0,1)

Two level hierarchical Tiling 
with 
L1 HP : (1,1) and (1,-1)
L2 HP : (1,1) and (0,1) 

Traditional Hierarchical
Tiling

Jagged Hierarchical
Tiling
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Algorithm (step 1)
1. Given:

Tiling hyperplanes: Φ1,Φ2…Φm

L1 tile sizes     : tL11, tL12 … tL1m

L2 tile sizes     : tL21, tL22 … tL2m

Original Domain   : Ds
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Algorithm (step 2 & 3)
2. Tile for L1 using PLUTO:

Example:
Tiled Domain:     2TL1 <= t <= 2TL1 
+1

     4IL1 <= i <= 4IL1 +3
3. Update Domain Constraint go get               
such than
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Algorithm (step 4)
4. Tile for L2 using PLUTO:

Example:

Tiled Domain: 3TL2 <= TL1+IL1 <= 3TL2 +2
                       3IL2 <=     IL1   <= 3IL2 +2

T
I

Tiled 
Domain
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Algorithm (step 5 & 6)
5. Perform Unimodular transformation on L1 supernode.

6. Perform Unimodular transformation on L2 supernode:
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Limitations of the framework

1. Parallelism is extracted using manual input (.cloog 
file is modified to generate the code). Can we do it 
automatically?

2. Framework uses parametric knobs to find best cases.

14



Fine-Grain Execution

• Thread Grouping
• Take advantage of outer 

tile(L2) locality.
• Uses low overhead 

atomic operation
• Hierarchical 
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Experimental Platform

• 61 cores, 1.1GHz with 
4 hyper-threads

• L1 Cache: 1 cycle
• Unified L2 Cache: 

~12 cycles
• DRAM:~230 cycles)
• Shared ring L2 

caches: 180-250 
cycles

TD: Tag Directory

• Intel Xeon Phi 7110P coprocessor
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Applications and Sizes

Application Size (N) Size (T)

Heat-1d 10000000 10K

Heat-2d 11504x11504 2K

Heat-3d 480x480x480 100

Jacobi-2d 11504x11504 2K

7point-3d 480x480x480 100
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Heat 2-D
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Heat 3-D
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Conclusion and Future Work

• Hierarchical tiling technique that improves locality and reuse.

• Collaborative view with grouping of threads.

• Orchestration of data movement among threads working in close proximity 
in time and space.

• Explore other multicore architectures.
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Back up slides



Iteration Space Domain 
An Example

for (i=1; i<n;i++) {
   for (j=1; j<n;j++){
      A[i][j]=A[i−1][j]+A[i][j−1];
   }
}

Stencil Example

Iteration space as a 
System of Equations

Iteration Space as 
Matrices

Graphical 
Representatio

n of the 
Iteration 
Space

i

j
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Background
• Hyperplane

– (n-1) dimensional affine subspace in n dimensional space

• Tiling Hyperplane
– For source(s) and target(t): 
– Dependencies are satisfied or can be satisfied within.

• Example
(1,0)

(0,1)

(1,-1)

Not a legal 
tiling 
hyperplane
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Scheduling Hierarchical Tiled Domain

Schedul
e:

for (t=0; t<T;t++) {
  for (j=1; j<N;j++){
    A[t+i][j]=α∗(A[t][i+1]-

β∗A[t][i] + A[t][i−1]);
  }
}

A Stencil Example

L1 
HP
L2 
HP
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Background: Jagged Tiling for Pipeline Start

Two level hierarchical Tiling with 
L1 HP : (1,0) and (0,1)
L2 HP : (1,1) and (0,1) 

for (i=1; i<n;i++) {
   for (j=1; j<n;j++){
      A[i][j]=A[i−1][j]+A[i][j−1];
   }
}

HP: Hyperplane
(n-1) dimensional affine subspace 
in n dimensional space

Two level hierarchical Tiling with 
L1 HP : (1,0) and (0,1)
L2 HP : (1,0) and (0,1)
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Heat 1-D
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Performance (GFlops)
Application Balanced Compact Tile Size Hierarchical

Heat-1d 106.59 107.05 4Kx4K 99.65

Heat-2d 122.42 122.78 16x16x256 109.78

Heat-3d 59.375 (180 ths) 57.22 3x3x2x480 27.91

Jacobi-2d 68.26 68.40 16x16x256 -

7point-3d 31.48 31.82 2x2x4x480 -

Application Scatter Compact Tile Size Gain

Heat-1d 115.95 111.77 1Kx2K / 4x4 8.31%

Heat-2d 131.47 134.95 16x32x256 / 4x4x2 9.91%

Heat-3d 61.73 74.168 1x2x4x480/4x4x2x1 24.91%

Jacobi-2d 67.94 72.22 16x32x256 / 4x4x2 5.58%

7point-3d 33.46 41.74 1x2x4x480/4x4x2x1 31.17%

PLUTO OpenMP

FineGrain Pthread
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