
1

On the Feasibility of a Codelet Based Multi-core
Operating System

Jack B. Dennis
MIT Computer Science and Artificial Intelligence Laboratory

Guang R. Gao
University of Delaware

Abstract—We believe it is feasible to build a multi-core operat-
ing system that implements virtual memory, and honors the prin-
ciples of modular software construction, using runtime software
that executes a codelet program execution model. Performance
and energy efficiency can be enhanced through co-design of new
architecture features that replace resource management functions
of runtime software with efficient hardware mechanisms. The re-
sulting systems will offer benefits in programmability, application
portability and reuse absent in current systems.

I. INTRODUCTION

During the past decade, vendors of processing chips have
found that placing multiple processing cores in a single silicon
chip is a better way to employ chip area than continuing the
quest for greater single thread performance. The prospect is
that processing chips with hundreds of processing cores and
beyond will become the standard parts of future computer
systems.

Users of these new chips face the problem of organizing
the computations they wish to perform as collections of
parallel activities that communicate with one another. For this,
programmers often use MPI, the Message Passing Interface
[1], which has become an accepted standard software library
for writing high performance application codes.

In this position paper we argue that virtual memory is
required to achieve the flexibility of resource management
demanded for future applications of massively parallel com-
puter systems. Moreover, a virtual memory implementation is
a prerequisite for building systems that can support the general
composability of parallel programs [2]. We believe the best
route to a major improvement in programmability of massively
parallel systems is to extend the virtual memory concept to
the domain of parallel processing. Then, programmers will
be freed from managing processor assignment and schedul-
ing, just as virtual memory freed them from involvement in
memory management. We believe it is feasible to implement
a multi-core operating system that will support composability
of parallel programs, an achievement that will yield benefits
in programmability, ease of reuse and portability, as well as
performance and energy efficiency.

A. Our Position Statements

• It is feasible to build a multi-core operating system (OS)
that implements virtual memory, and honors the prin-
ciples of modular software construction, using runtime
software that implements a codelet program execution
model.

• Performance and energy efficiency can be enhanced
through co-design of new architecture features that re-
place resource management functions of runtime software
with efficient hardware mechanisms.

• The resulting systems will offer benefits in programma-
bility, application portability and reuse absent in current
systems.

B. Synopsis

In Section II, we argue that virtual memory is essential
for massively parallel computing in the age of many-core
chip technology. Section III explains why a virtual memory
implementation is a precondition for efficiently supporting
composability of parallel program modules. In Section IV,
we explain our claim that it is feasible to build a Multicore
Operating System, using codelet based runtime software, that
implements a global virtual memory and supports modular
construction of general parallel programs. In Section V, we
advocate development of an enhanced hardware architecture
that will gain performance and energy efficiency by replacing
software resource management functions with efficient hard-
ware mechanisms. Finally, we mention some related work and
present conclusions.

II. MEETING THE DEMAND FOR FLEXIBILITY

Users of high performance computing wish to run appli-
cations that have changing needs for memory and processing
from time to time during program execution. This demand
arises from several sources: Physics and materials simulations
are becoming more sophisticated. Scientists wish to model
systems made up of components with different physical prop-
erties and irregular shapes; they wish to model what happens
at the boundaries between solid, liquid and gaseous phases
of substances. Parallel search and classification are now high
priority areas for high performance computing. Performing
large-scale computation on line graph models of large systems
has become important.

This demand for flexible resource management is counter
to the conventional wisdom about multi-core systems that
has prevailed in recent years. The dominant philosophy is
that programmers must manage resources and plan transfer
of data between levels of the memory hierarchy to achieve
full utilization of chip processing and memory resources.
This has been a very successful approach for applications
that may be expressed as data parallel computations over a
uniform grid of two or three dimensions. Software tools have



2

evolved to assist the application programmer in this task:
The HPC languages X10 [3], Chapel [4], and Fortress [5]
have been designed and implemented to help users specify
the distribution of data and work load over the memory and
processing resources of a large parallel computing system.
MPI, the popular library of routines for coding computations
that fit the bulk synchronous parallel (BSP) model, has become
an important standard implementation tool.

Yet these tools do not address the underlying need of new
applications for execution time flexibility in resource use. In
response to the new demands for high performance computing,
thinking about system design has evolved to a new view:

• The computer system must efficiently support a user
interface through which the dynamic needs for memory
and processing may be communicated by the application
to the system.

A. Virtual Memory

Introduction of virtual memory in the late 1950s was
the most significant innovation in computer architecture for
improving programmability. Before virtual memory, program-
mers had to employ overlays of the main memory address
space to run programs using collections of code and data
that exceeded the size of the main memory. Programmers
also needed to explicitly program data movement within
the memory hierarchy to address the issue of storage size
limitations as well as the issue of locality.

However, in the new era of parallel computing, program-
mers have been asked to give up the benefits provided by a
virtual memory in which all processes operate. They must be
concerned with how the data is distributed, which data to move
to less accessible memory and which data to retain for reuse,
who has access to which parts, and how processes can avoid
interfering with each other. We believe this need not be the
case, and that massively parallel systems with virtual memory
and major programmability benefits can be built.

B. Flexible Resource Management

Two concepts, a unit of memory and a unit of processing,
are essential as the basis for dynamic management of system
resources. The unit of memory, often called a data block,
is a block of memory words that may be relocated within
the address space accessible to a program. A data block may
contain references to other data blocks, as, for example, in a set
of data blocks organized to model a tree data structure. When
a data block is relocated in memory, one must ensure that all
references to the data block from other data objects remain
valid. Unless the references are universally valid identifiers
of the data block, they would have to be updated – a messy
process if the references could be from remote sites in the
computer system. By requiring that a data block be relocatable,
the system has, in principle, the ability to move data blocks
to different locations in physical system memory to optimize
data distribution in response to program behavior.

The unit of processing is a block of machine instructions
that defines a computation task. We will use the term codelet
for this concept, as it is becoming widely accepted with this

meaning. A codelet is the unit of work scheduled for execution
by a processing core of a multi-core computer system. The
greatest flexibility in managing resources will be available
if any codelet can be executed on any processing core. This
property is provided if all cores have the same architecture and
instruction set since the codelets are simply memory objects
that (with flexible memory allocation and relocatable code) can
be moved to any memory location in the system and remain
useable. Moreover, the ability to execute any task on any core
requires that any input data blocks required by the task be
accessible to the codelet.

Thus an essential element of system implemented resource
management is that data blocks have unique identifiers that
may be used to access the data block form anywhere in
the system, regardless of where the data block is located. A
unique identifier (UID) is assigned to each data block when
it is created – memory is allocated for it. There must be a
sufficient supply of UIDs to make assignments to as many
objects as may exist at any time during system operation.
The set of all UIDs forms a space of virtual addresses. A
computer system supporting dynamic resource management
must provide (in runtime software or in hardware) a mapping
of virtual addresses to physical memory locations that may be
readily changed as new objects are created and others fall out
of use.

For some time, multi-core virtual memory implementations
have been available in multi-core servers from Oracle [6] and
SGI [7]; however these implementations use extensions of
the memory mapping, paging and TLB hardware that have
become standard features of microprocessor chips for many
generations. For use in massively parallel high performance
systems, these implementations have unacceptable complexity
and energy consumption. Fortunately, this need not be the case:
we have demonstrated a memory model implementation, using
trees of fixed size memory chunks, that provides an efficient
global virtual memory for all executing tasks in a multi-core
system [8].

• Through reconsideration of virtual memory support in the
context of data blocks and codelets, an energy efficient
implementation of virtual memory with competitive per-
formance can be achieved.

A memory allocation mechanism is required to create new
data blocks as required by program execution. This implies
that the system must maintain a pool of available memory from
which new data blocks may be allocated. Some mechanism
is needed to return memory occupied by data blocks to
the free memory pool when they are no longer needed by
the executing program. One choice is to require that the
programmer explicitly release data blocks when they are no
longer needed. There are two problems with this plan: The
first problem arises because references to a data block may
have been passed to other tasks, or incorporated into data
blocks that are part of a data object that will be used in later
processing. The upshot is that it is, in general, impossible for
a program unit to know when it is safe to free memory for
a data object it has created. Requiring programmers to have
this knowledge is a violation of the principles of modular



3

program construction [2]. The second problem concerns space
leaks, failure to release memory no longer in use, which can
lead to memory exhaustion and system failure. Avoiding this
problem requires that programmers meticulously ensure that
unused data blocks are returned to the pool of free memory.
The alternative is automatic garbage collection implemented
by software or hardware.

The fact that the task label is a complete specification
of a task for execution makes possible extremely efficient
scheduling of tasks. In conventional systems, switching a
processor from one task to another is very expensive because
the addressing environment of the new task can be different
from that of the old task. In a system where data blocks and
codelets have globally unique identifiers, all tasks may run in
the same addressing environment and starting task execution
on a processor is accomplished just by loading the UID of the
codelet and the UID of its initial environment of data objects.

III. COMPOSABILITY OF PARALLEL PROGRAMS

By Composability we mean the ability to use any program
module, without any changes, as a component of other pro-
gram modules. To support composability of program modules,
a computer system must honor a set of six principles set forth
in [2]. The principles concern the interface between a program
module and the program that is making use of it. The interface
supported must meet these requirements:

• Information Hiding Principle: The user of a module
must not need to know anything about the internal mech-
anism of the module to make effective use of it.

• Invariant Behavior Principle: The functional behavior
of a module must be independent of the site or context
from which it is invoked.

• Data Generality Principle: The interface to a module
must be capable of passing any data object an application
may require.

• Secure Arguments Principle: The interface to a module
must not allow side-effects on arguments supplied to the
interface.

• Recursive Construction Principle: A program con-
structed from modules must be useable as a component
in building larger programs or modules.

• System Resource Management Principle: Resource
management for program modules must be performed
by the computer system and not by individual program
modules.

Many of these principles follow from the observation of
Parnas [9] that the user of a program module must not need
to know anything about the internal working of the module
to make effective use of it. In particular, the System Resource
Management Principle is needed because a program module
cannot be aware of resource assignments made for other
program modules. The principles are the same whether or not
the computer system performs parallel execution of modules.

Without a system implementation of memory management,
it would be impractical for a computer system to honor the
six principles. Lacking the ability of a program module to
ask the system to allocate memory, no module would be
able to create new data objects. In the absence of automatic

garbage collection, abandoned memory space could not be
reused because no module can know when no references to
an object remain.

• System management of memory in a global virtual
memory is essential in a computer system that supports
composability of parallel program modules.

IV. DESIGN FOR A MULTI-CORE OS

A number of DOE XStack projects [10], such as Dynax
[11] and SWARM [12], [13], aim to develop dynamic adaptive
event-driven execution models that will provide a better API
for application programmers and applications with varying
demands for memory and processing resources.

In designing a runtime system to implement memory man-
agement three issues must be addressed: (1) how blocks of
memory are allocated from a pool of free memory; (2) how
blocks no longer needed may be returned to the free memory
pool; and (3) an efficient representation for the free memory
pool. In a distributed system with many processing cores, these
issues become more complex. For example, the free memory
pool should be distributed across the processors, so requests
for new memory blocks at any processor may be quickly met.
But how should the system ensure that roughly equal amounts
of free memory exist at each processor?

Implementing memory allocation from a free memory pool
is fairly straightforward; for instance the buddy system is
a popular solution [14]. However, implementing distributed
garbage collection is another matter. Much effort has been de-
voted to develop methods for adapting the classic mark/sweep
algorithm [15] for distributed systems, with disappointing
results. The critical problem is that the references that must be
traced may cross system boundaries at any level of the memory
hierarchy. A way out of the garbage collection dilemma is
to adopt a program execution model in which data blocks,
once defined by execution of a codelet, are never modified.
This write-once policy guarantees that cycles of references can
never be created, and therefore the reference count method
of garbage collection [8] may be used. Moreover, reference
count garbage collection is readily implemented in hardware
as a distributed activity, concurrent with user task execution.
Another major benefit of the write-once policy is that cache
memories may be used with no concern for multiprocessor
coherence issues, as the content of shared data blocks never
changes. Thus our conclusion is:

• An efficient runtime implementation of global virtual
memory is possible if the write-once policy for manage-
ment of data blocks is adopted.

V. ENHANCED ARCHITECTURE

Implementation of virtual memory through a multi-core Op-
erating System running on hardware with inadequate support
for virtual memory yields a computer system that cannot reach
the performance level achievable with hardware co-designed
with the programming model for the best match of hardware
technology to the goal.

A large source of energy inefficiency in current systems
is in execution of instructions of the runtime and OS soft-
ware which do not contribute to progress in performing the



4

computation specified by application code. A large portion
of runtime software is devoted to implementation of resource
management policies. Replacing these functions of the runtime
software with efficient hardware mechanisms has the potential
to yield major improvements in performance and energy effi-
ciency. The benefits of hardware implementation of resource
management functions has been demonstrated in simulations
of the Fresh Breeze system architecture [8].

In the choice between implementation of a PXM with
runtime software versus implementation with a new hardware
architecture, there are advantages and drawbacks to each
alternative. The software approach offers flexibility and ease of
making changes and improvements, but has limited potential
in performance and energy efficiency. Using novel hardware
can yield better performance and energy efficiency, but design
errors are difficult to repair, and interesting avenues for further
advance may be stifled.

A best path toward systems meeting the demands of fu-
ture high performance applications will likely be to build a
multi-core operating system supporting virtual memory and
modular software principles, then incorporate the tested design
elements into a system architecture with superior programma-
bility, performance and energy efficiency.

VI. RELATED WORK

Partitioned Global Address Space (PGAS) languages such
as Co-Array Fortran [16] or UPC (Unified Parallel C) [17] are
used to ease the programmers burden by implementing access
to remote data objects using global addresses. This enables
the programmer to transparently access data objects held in
remote memories of a distributed memory system. Every data
object has a global address consisting of its local address and
the identifier of the processor where the object resides. When a
user program accesses an object using its global addresses, the
PGAS runtime splits off the processor identifier and uses it to
send a message requesting the access at the remote processor.
The global address space of a PGAS model is not a true virtual
memory because global addresses are not independent of the
physical location of the data object. Therefore, a data object
cannot be moved to a different processor without invalidating
all occurrences of the global address in the program. This fact
negates for PGAS models the benefits of virtual memory for
general modular program construction.

VII. CONCLUSION

The advent of the multi-core era has opened opportunities
for exploration of new directions in computer system archi-
tecture. We see two paths of development that can lead to
systems with programmability advantages never seen before.
The first is a codelet based multi-core operating system; the
second employs improved processor architecture and memory
organization to replace software implementation of resource
management functions with hardware mechanisms, thereby re-
alizing additional gains in performance and energy efficiency.
Either path will lead to environments for parallel computing
in which any parallel program can be used (subject to total
resource constraints) without modification, in the construction
of new parallel programs.

VIII. ACKNOWLEDGEMENT

The authors appreciate the help from members of the Com-
puter Architecture an Parallel Systems Laboratory (CAPSL)
at the University of Delaware, especially, Jose M. Monsalve
and Jaime Arteaga, and colleagues at ET International, Inc.
who have made publication of this paper possible.

The ideas presented here have grown out of research funded
by the DOE Grant DE-SC0008716, NSF Grant CCF-1217498,
AFOSR Grant number FA9550-13-1-0213 and by European
FP7 project TERAFLUX with ID 249013.

REFERENCES

[1] M. P. Forum, “Mpi: A message-passing interface standard,” Knoxville,
TN, USA, Tech. Rep., 1994.

[2] J. B. Dennis, “A parallel program execution model supporting modular
software construction,” in Massively Parallel Programming Models.
IEEE, 1997, pp. 50–60.

[3] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar, “X10: An object-
oriented approach to non-uniform cluster computing,” SIGPLAN Not.,
vol. 40, no. 10, pp. 519–538, Oct. 2005. [Online]. Available:
http://doi.acm.org/10.1145/1103845.1094852

[4] B. Chamberlain, D. Callahan, and H. Zima, “Parallel programmability
and the chapel language,” Int. J. High Perform. Comput. Appl.,
vol. 21, no. 3, pp. 291–312, Aug. 2007. [Online]. Available:
http://dx.doi.org/10.1177/1094342007078442

[5] E. Allen, D. Chase, J. Hallett, V. Luchangco, J.-W. Maessen, S. Ryu,
G. L. Steele, and S. Tobin-Hochstadt, “The Fortress Language Specifi-
cation,” Sun Microsystems, Inc., Tech. Rep., March 2008, version 1.0.

[6] A. Leon, B. Langley, and J. Shin, “The ultrasparc t1 processor: Cmt
reliability,” in Custom Integrated Circuits Conference, 2006. CICC ’06.
IEEE, Sept 2006, pp. 555–562.

[7] G. Thorson and M. Woodacre, “Sgi R©UV2: A fused computation
and data analysis machine,” in Proceedings of the International
Conference on High Performance Computing, Networking, Storage
and Analysis, ser. SC ’12. Los Alamitos, CA, USA: IEEE
Computer Society Press, 2012, pp. 105:1–105:9. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2388996.2389138

[8] J. B. Dennis, G. R. Gao, and X. X. Meng, “Experiments with the
Fresh Breeze tree-based memory model,” in International Symposium
on Supercomputing, Hamburg, June 2011.

[9] D. L. Parnas, “On the criteria to be used in decomposing systems into
modules,” Commun. ACM, vol. 15, no. 12, pp. 1053–1058, Dec. 1972.
[Online]. Available: http://doi.acm.org/10.1145/361598.361623

[10] US Department of Energy. (2014, April) Advanced scientific
computing research - x-stack portfolio. [Online]. Avail-
able: http://science.energy.gov/ascr/research/computer-science/ascr-x-
stack-portfolio/

[11] D. Project. (2014, April) Dynax project website. [Online]. Available:
https://www.xstackwiki.com/index.php/DynAX

[12] E. International, “Swarm (swift adaptive runtime machine). scalable
performance optimization for multi-core/multi-node.”

[13] C. Lauderdale and R. Khan, “Towards a codelet-based runtime
for exascale computing: Position paper,” in Proceedings of the
2Nd International Workshop on Adaptive Self-Tuning Computing
Systems for the Exaflop Era, ser. EXADAPT ’12. New
York, NY, USA: ACM, 2012, pp. 21–26. [Online]. Available:
http://doi.acm.org/10.1145/2185475.2185478

[14] J. McCarthy, “Recursive functions of symbolic expressions and their
computation by machine, part i,” ACM Communications, April 1960.

[15] D. F. Bacon, C. R. Attanasio, R. V.T., and S. E. Smith, “A
Pure Reference Counting Garbage Collector,” Aug. 2001. [On-
line]. Available: http://researcher.watson.ibm.com/researcher/files/us-
bacon/Bacon03Pure.pdf

[16] W. W. Carlson, J. M. Draper, and D. E. Culler, “S-246, 187 introduction
to upc and language specification.”

[17] J. B. Dennis, “Compiling fresh breeze codelets,” in International Work-
shop on Programming Models and Applications for Multicores and
Manycores. IEEE, 2014.


