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GVR  Project  Objectives  
(Vision)	

•  Create and realize GVR model for Resilience: 
Portable, Flexible, Application-Controlled Resilience  

•  Application Studies: Demonstrate usable, scalable 
resilience with Gentle Slope and Flexible forward 
error recovery 

•  Maximize recoverable errors (x-layer resilience) 

X-stack PI Meeting:  Global-view Resilience (GVR) 

Create  a  gentle-‐‑slope  to  Exascale  resilience	

2 May 28-29, 2014 
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GVR  Concepts  and  API	
•  Create Global view structures 

o  New, federation interfaces 
o  GDS_alloc(...), GDS_create(...)!

•  Global view Data access 
o  Data: GDS_put(), GDS_get()!
o  Consistency: GDS_fence(), GDS_wait(),...!
o  Accumulate: GDS_acc(), GDS_get_acc(), GDS_compare_and_swap()!

•  Versioning 
o  Create: GDS_version_inc(), Navigate: GDS_get_version_number(), 

GDS_move_to_newest(), ...!

•  Error handling 
o  Application checking, signaling, correction: GDS_raise_error(), 

GDS_register_local_error_handler()...!
o  System signaling, integrated recovery: GDS_raise_error(), GDS_resume()!

X-stack PI Meeting:  Global-view Resilience (GVR) 

Put Get Put 

Check Error Repair 

Versioned,  multi-‐‑stream  distributed  arrays  +  streams  are  
portable  resilience  abstractions;  x-‐‑layer  to  maximize  

recoverable  errors	

3 May 28-29, 2014 

GVR  Vision  +  Progress	
•  GVR Model: Portable, Flexible, Application Controlled 

Resilience 
o  Established model: use cases, extensive application partnership studies 
o  Realized systems: several generations of prototypes, iteration informed by 

application studies 
o  Gentle slope (5 demonstrations, <1% code change, negligible overhead) 
o  Scalable to Exascale resilience: High error rates and Latent and silent errors 

•  Application Studies: Gentle Slope, Flexible forward error 
recovery 
o  Numerous studies; incremental adoption, useful today 
o  Compatible with existing software architectures (app, library, programming system) 
o  Enables exploitation of knowledge from all levels (app semantics-based recovery) 
o  Enables all kinds of error recovery desired so far 

•  Maximize Recoverable Errors (cross-Layer) 
o  Defined Unified signaling and Handling framework 
o  Numerous Examples of use 
o  “Open Resilience” can catalyze a cross-layer resilience eco-system 

X-stack PI Meeting:  Global-view Resilience (GVR) 4 May 28-29, 2014 
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Simple  Version  Recovery:  
Preconditioned  Conjugate  Gradient	

•  Version x  “solution vector” 
o  Restore x on error 

•  Version p “direction vector” 
o  Restore on error 

•  Version A “linear system” 
o  Restore on error 

•  Restore from which version? 
o  Most recent (immediately detected 

errors) 
o  Older version (latent or “silent” errors) 

 

Unlike many other methods, CG functions only for symmetric matrices. The symmetry

of the matrix is used to simplify the algorithm. In a general Krylov subspace method, we

need to keep track of the entirety of the subspace over which we are currently minimizing.

Due to symmetry, CG needs only to keep track three vectors of length m: the current

approximate answer x, the current residual r, and the current direction of search p. Our

particular implementation also caches two iterations of the scalar ⇢ = (r, r). Note that r is

updated in-place, rather than being recalculated in each iteration from b�Ax. This means

that, if a fault occurs in the computation, the values of r and b� Ax may diverge.

The norm residual krk for CG is expected to converge at an exponential rate. In general,

each iteration of krk should be smaller than the previous iteration by some factor. The

convergence factor is dependent on the spectral condition number of A [50, p. 215].

2.1.2 Preconditioned Conjugate Gradient (PCG)

1: r = b� Ax

2: iter = 0
3: while (iter < max iter) and krk > tolerance do
4: iter = iter+1
5: z = M

�1
r

6: ⇢old = ⇢

7: ⇢ = (r, z)
8: � = ⇢/⇢old
9: p = z + �p

10: q = Ap

11: ↵ = ⇢/(p, q)
12: x = x+ ↵p

13: r = r � ↵q

14: end while

Figure 2.2: The preconditioned conjugate gradient algorithm is nearly identical. to CG,
except that the preconditioner M is applied to r once per iteration.

One approach to speeding up the convergence of CG is by applying a preconditioner M to

A and b and then solving the equation M

�1
Ax = M

�1
b [50, p. 276]. It is often less expensive

9

    A= ... 

X-stack PI Meeting:  Global-view Resilience (GVR) 5 May 28-29, 2014 

Multi-‐‑stream  in  PCG:  Matching  
redundancy  to  need	

X-stack PI Meeting:  Global-view Resilience (GVR) 
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Applying  GVR  to  Flexible  
GMRES	

Robust  to  minor  Inner  Solver  errors	

Remove  error  in  outer  solver	
-‐‑  Restart,  recompute	
-‐‑  Version  recovery	
-‐‑  Various  error  rates	

Check:  Residual  decreasing	

X-stack PI Meeting:  Global-view Resilience (GVR) 

Joint  w/  Mark  Hoemmen,  
Keita  Teranishi,  and  Mike  

Heroux  of  SNL	

Ziming  Zheng,  Andrew  A.  Chien,  Keita  Teranishi,  "ʺFault  
Tolerance  in  an  Inner-‐‑Outer  Solver:  a  GVR-‐‑enabled  Case  

Study"ʺ,  in  Proceedings  of  VECPAR  2014,  July  2014.  	
7 May 28-29, 2014 

Trilinos  Library  Hierarchy  
+  GVR	

vector,  matrix,  and  
graph  classes	

Kernel  Libraries	

Linear  solver,  nonlinear  solver,  
…	

Solver  Libraries	

Scientific  Applications	

PDES Circuits Inhomogeneous 
Fluids 

… 

GVR	

Global  data  versioning  
and  protection  	

GVR  Enabled  	
FT-‐‑solver	

Application  resilience	

X-stack PI Meeting:  Global-view Resilience (GVR) 
Trilinos  Sandia  (Heroux,  
Hoemmen,  Teranishi)	8 May 28-29, 2014 
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GVR+Trilinos:  Gentle  
Slope  Resilience	

•  <1%  Trilinos  
library  Code  
change  (C++)	

•  23  lines  PCG  	
Solver  change	
	
•  25  lines  Flexible  

GMRES  change	

X-stack PI Meeting:  Global-view Resilience (GVR) 
GVR’s  design  enables  application  and  library  resilience  

with  small  code  change.	 9 May 28-29, 2014 

Overall Outcomes: Stalls, Convergence, and EE

Immediate mostly converges correct

Nop admits a high probability of EE

Residual-based trades low EE for high stall

High-frequency ABFT has low EE and low stall

Zachary Rubenstein (University of Chicago Computer Science)Error Checking and Snapshot-Based Recovery in a Preconditioned Conjugate Gradient SolverFebruary 13, 2014 21 / 38

X-stack PI Meeting:  Global-view Resilience (GVR) 
PCG  Study,  Rubenstein  MS  Thesis,  March  2014	

10 May 28-29, 2014 
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Latent  Error  Recovery	
When multiple versions are useful 
Impact on high-error rate regimes 
Impact on difficult to detect errors 

X-stack PI Meeting:  Global-view Resilience (GVR) 
  G.  Lu,  Z.  Zheng,  and  A.  Chien.  When  is  multi-‐‑version  checkpointing  needed?  
3rd  Workshop  on  Fault-‐‑tolerance  for  HPC  at  extreme  scale,  FTXS  ’13,  2013.  	

Multi-‐‑version  increases  efficiency	
at  high  error  rates	

Multi-‐‑version  critical  for  
difficult  to  detect  errors	

Latent  or  “silent”  error  
model	

11 May 28-29, 2014 

Efficient  Versioning	
•  Different implementations (SW, HW, OS, Application) 
•  Efficient storage and materialization 
•  Leverages collective view 
•  Exploit NVRAM, burst buffers, etc. 

X-stack PI Meeting:  Global-view Resilience (GVR) 

RMA, competitive performance is challenging. Second, we
evaluate and compare the log-structured approach to the
traditional flat array approach using several micro-benchmarks
to measure communication latency, bandwidth, and version
increment cost. Finally we evaluate both log-structured and
flat implementations using three full applications, OpenMC,
canneal, and preconditioned conjugate-gradient. This last eval-
uation is done for a DRAM-only system, and a system that
uses DRAM and SSD/Flash to store versions.

Specific contributions include:

• design and build a log-structured implementation of
arrays that supports efficient versioning and RMA
access

• evaluation of versioning in flat (traditional) and log-
structured implementations using a variety of mi-
crobenchmarks shows that the log-structured can create
versions as much as 10x faster even for 1MB array,
introducing versions in an unobtrusive fashion

• further, in systems with RMA, log-structured imple-
mentations can achieve low latency and high bandwidth
for small access (< 128B or larger if block size is
increased) matching flat implementations,

• overall, the micro-benchmarks indicate that log-based
implementation deliver equal performance on reads
(within 74%), but as expected incur additional over-
heads on writes (from 7% to 99%). In short, overall
performance comparisons will depend on workload

• evaluation using several application benchmarks shows
that versioning runtime overheads can be negligible
(3.7% for PCG, 4.7% for OpenMC), and manageable
for the other (26% canneal). This means that versioning
for resilience may be viable in many settings.

• in all cases, where there is opportunity in the access
patterns, the log-based approach captures potential
memory usage savings (31% in canneal), in some
cases over 90%.

• adding NVRAM or SSD to the system resources,
experiments show that log-structured approach increase
tolerance of NVRAM limitations such as low write
bandwidth or limited lifetime, improving performance
by 20% (OpenMC, with SSD).

II. BACKGROUND

A. Global View Resilience

The Global View Resilience (GVR) project supports a new
model of application resilience built on versioned arrays (multi-
version). A programmer can select a global array [19] for
versioning and control timing and frequency (multi-stream).
Access to these arrays is provided through dedicated library
calls such as put or get. The timeline of application state created
by versioned arrays can then be used to both check application
data for errors, and to recover from said errors (application-
customized checking and recovery). Because the GVR library
operates at the level of application arrays, it is both convenient
to use and portable, enabling convenient portable resilience.

Processes

Put Get

Versions

Fig. 1. Multi-version global array in GVR
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Fig. 2. The canneal benchmark in the PARSEC benchmark suite modifies a
limited portion of the array per iteration

Its critical to understand how GVR global array are
versioned (see Figure 1), a process in which an application
determines when a version should be created by calling
version inc(), and multiple copies of the array are persisted.
These copies can be used later by the application for error
recovery, and while the GVR system provides consistent
versions of single array, any coordination across multiple arrays
(i.e. across the multiple streams) is an application responsibility.

Because errors can be difficult or costly to detect, they are
sometimes latent, and thus multiple versions can be used to
improve overall performance and reliability [20]. This capability
is beyond that of traditional checkpoint/restart systems that
only maintain a single checkpoint; if there are latent errors that
corrupt the checkpoint, there is no way to recover the system.
Lu et al. show when multi-version checkpointing is useful
[20] across a range of error and detection latency assumptions.
The application-level abstraction of multi-version arrays creates
a wide variety of opportunities for flexible error checking
and recovery exploiting application semantics. However, those
topics are the subject of other research studies.

B. Preserving Multiple Versions Efficiently

A central challenge for the multi-version foundation for
resilience is how to implement versioning efficiently. The
traditional method is to to create an copy of the array for
each new version; we call this the flat array approach. GVR
limits modification to the current version of the array, limiting
older versions to read-only which opens numerous avenues for
optimization.

Our studies show that many applications modify only

Metadata Data

Version 0 Version 1
Initial 
Data

Log head Log tail

Tail pointer

Fig. 3. In-memory data structure of log-structured array

part of an array between versions. For example, Figure 2
shows the behavior of the canneal benchmark (from PARSEC
[21]). We instrumented accesses to the main data structure
called netlist::_elements, a contiguous array buffer,
to understand modification patterns using the PIN tool [22].
This structure is the core needed for resilient execution. We
assume that the array is divided into fixed-size blocks, and
mark each block if the contents of the block is modified. Figure
2 shows that only a small amount of the array is updated during
each iteration. Because the canneal benchmark runs for several
iterations with a barrier synchronization at the end of each
iteration, it naturally corresponds to a version. Our results show
that a small fraction of the array is updated in each iteration,
creating opportunity for optimization.

III. DESIGN

We present the design of log-structured implementations for
global arrays. We first describe the in-memory data structure,
then two implementations—RMA-based and message-based
protocol.

A. Data Distribution

Each global array is a distributed collection of buffers that
together comprise a single logical array. We assume that data
distributions map each range of array indices to a corresponding
remote memory buffer, and we assume the data distribution
does not change across versions. For a given operation, the
memory buffer (target) we need to access may be in a remote
node. We use the term “client” to indicate the originating node
and “server” for the target node.

B. Data structures

Figure 3 illustrates the in-memory log data structure of a
log-structured array. A log-structured array is constructed from
a single contiguous memory region, dividing it into two parts—
data and metadata blocks. Within the log-structured array, a
region of the global array is divided into fixed-size blocks, each
storing a portion of user data. Each metadata block contains a
pointer to a user data block. Thus for a given array size, we
have a fixed number of metadata blocks for each version. For
example, given that L is the length of array and B is block
size, single version requires dL/Be metadata blocks.

C. Operational semantics

There are two cases for a put operation. In the base case,
new data blocks are allocated at the tail of the log to record
the modified data. Then the corresponding metadata blocks

are updated, pointing to the newly allocated blocks. If the put
operation is overwriting data that has already been modified
since the most recent version creation, then it simply overwrites
the current data block. No new allocation is required. Thus new
versions are created incrementally based on new modifications
of a region.

Upon version inc(), we can create a logical new version by
simply creating a new set of metadata blocks for the version
(similar to a copy-on-write process creation). The new metadata
blocks are simply appended to the tail of the log. And the
location of the metadata (current version), but not their contents
is broadcast to all of the clients. At this moment, all metadata
blocks are identical to those of the previous version.

If there are concurrent and non-conflicting put and get oper-
ations, the implementation must merge the updates and capture
all modifications. GVR provides synchronization operations to
order conflicting updates, and if operations are not well-ordered,
then arbitrary interleavings of update are acceptable.

D. Data Access Protocols

A key feature of modern cluster networks is RDMA (Re-
mote Direct Memory Access). RDMA can be high performance
because it is 1-sided, not requiring involvement from the remote
CPU. However, implementing complex data manipulations
with RDMA is complicated, and often not the most efficient.
Therefore we present two access protocols, one with RDMA
and the other without RDMA. Hereafter we use more generic
term RMA (Remote Memory Access), instead of RDMA.

1) RMA-based Protocol: Uses RMA operations only, with
all data operations implemented by clients. The server exposes
memory regions through RMA, but performs no operations.

a) Metadata cache: To access array data, a client needs
the metadata blocks to find the location of the needed data
blocks. Upon access, the client first checks the cache for the
needed metadata, and if necessary fetches it from the remote
node. Because the metadata may be correct even across a
version inc(), the metadata cache is not flushed at new version
create. Instead, it is checked upon access, and if determined to
be stale (failed access), then is it updated.

As described in III-C, each metadata block is updated at
most once in a single version, This means if a metadata block
is already updated in the latest version, it will never change.
Therefore, if a metadata cache is for the updated block, that
cache is guaranteed to be always valid.

As a result, each metadata cache has two states: valid and
maybe invalid. Each client can determine the state of the cache
without involving communications. Upon a version increment,
all processes exchange the position of the log tail. If a metadata
cache points to a location after the known log tail, that cache
is valid because that data block is allocated in that version.

b) Put: RMA put requires a relatively complex proce-
dure illustrated in Figure 4. Log area is exposed via the RMA
interface as a single contiguous memory buffer. At a fixed
location in the area, there is a special integer field to contain
tail pointer of the log.

1) A client first tries to increment the tail pointer to
allocate a new data block at the end of the log. This
is done by an atomic operation.
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Fig. 9. OpenMC Performance with NVRAM emulation (computation rate)

Figure 8 shows overall results of OpenMC. Log-RMA
performs almost as good as Flat-RMA. In 32-node case, Log-
RMA is just 4.7% slower compared to Flat-RMA. While
achieving similar performance, log-structured array consumed
14.5% less memory to preserve versions, as shown in Figure
14.

Figure 9 compares performances when NVRAM or SSD
is introduced in the system. Since the tally size per process
shrinks as the number of processes increases, results are plotted
in per-process performance. Performance difference is most
significant in 2-process case where each process holds the
biggest size of data. In 2-process case, Flat-RMA performance
is significantly dropped when NVRAM or SSD is introduced
in the system. However for Log-RMA, NVRAM or SSD adds
smaller impact to the performance. In the most extreme case for
2 processes, where SSD is introduced, Log-RMA outperforms
Flat-RMA by 20%. This is because Flat-RMA is blocked at
slow memory copy at each version increment while Log-RMA
is not.

2) PCG Solver: Preconditioned Conjugate Gradient method
(PCG) is a common way to solve linear systems (i.e. find
x in Ax = b) [27]. The PCG algorithm is a three-term
recursion, which means that, in each iteration, three vectors
are recalculated based on the values of these vectors from the
previous iteration. Our implementation uses the linear algebra
primitives Trilinos library [28], [29]. The vectors used in the
three-term recursion are stored in a customized variant of a
Trilinos Vector class that supports preservation and restoration
of values via a GDS object. In the course of computation, one
snapshot of each of these vectors is stored at every iteration.
Total number of versions (= number of iterations) depends on
the number of total number of processes, ranging from 114
(for 2 processes) to 141 (for 32 processes). For this study, we
use for A a sparse matrix derived from the HPCG benchmark
[30] of size 1000000⇥ 1000000.

Figure 10 shows the result of the PCG solver experiment.
This program shows a quite unstable behavior when the number
of processes becomes more than eight, so we pick the most
stable run among three trials. The Log-RMA result is pretty
close to Flat-RMA performance, even in the worst case the
additional overhead is just 3.7%. This program creates versions
more than 100 times during the run, the versioning cost is
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Fig. 10. Preconditioned conjugate-gradient (PCG) solver runtime (seconds)
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Fig. 11. Preconditioned conjugate gradient (PCG) solver runtime with
NVRAM emulation (seconds)

important. As shown in Figure 11, putting slower NVRAM into
the system heavily affects the performance. In this experiment
even Log-RMA is affected by NVRAM, possibly because
versioning frequency is too high. For this application, there is no
memory savings by Log-structured array because it overwrites
the entire region for every version.

3) canneal: Third application benchmark is a synthesis
benchmark based on canneal from the PARSEC benchmark
suite. It is a multi-threaded program which simulates an
optimization process of an electric circuit. It has an array
called netlist::_element, which is shared among all
worker threads. That array stores a huge list of elements of a
circuit, then the canneal program tries to swap two randomly-
chosen elements. If this swap improves the circuit, then the
result of swapping is written back to the array. The goal of
this benchmark is to reproduce the same access pattern to the
array using GVR.

To faithfully mimic the memory access patterns of real
applications, we developed a trace-replay framework to eval-
uate the performance of GVR arrays without rewriting the
applications with GVR library. First we extract the memory
access history of specified data structures by using PIN tool[22].
The interested data structures are marked up by inserting

Flat  (Traditional)	 Log-‐‑structured	
Comparative  Studies  	
with  applications  +	
varied  memory  hierarchies	

  H.  Fujita,  N.  Dun,  Z.  Rubenstein,  and  A.  Chien.  Log-‐‑structured  global  array  
for  efficient  multi-‐‑version  snapshots.  Uchicago  CS  Tech  Report,  May  2014	 12 May 28-29, 2014 
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Fission

Elas)c

Inelas)c

CESAR’s Nuclear Reactor Coupled Neutronics/Hydraulics Problem 

   Vessel    Æ     Core    Æ   Fuel Assembly  Æ    Fuel Rod  Æ   Nozzles/Spacer   Æ   Fuel Pellet 
(14 m x 4.5 m)   (4 m x 4 m)         (4 m x 20 cm)            (4 m x 1 cm)           (20 cm x 4 cm)          (1 cm x 1.5 cm) 

ASCAC Meeting, March 31, 2013 5 
5 

Monte  Carlo  Neutron  Transport  (OpenMC)	

•  High fidelity, computation intensive and large memory (100GB~ cross 
sections and 1TB~ tally data) 

•  Particle-based parallelization is used with data decomposition 
•  Partition tally data by global array 
•  OpenMC: best scaling production code 
•  DOE CESAR co-design center “co-design application” 

X-stack PI Meeting:  Global-view Resilience (GVR) ANL/CESAR    (Siegel,  Tramm)  	13 May 28-29, 2014 

Adding  Resilience  to  
OpenMC  with  GVR	

Initialize  initial  neutron  positions	
GDS_create(tally  &  source_site);  //Create  global  tally  array  and  source  sites	
for  each  batch	
      for  each  particle  in  batch	
              while  (not  absorbed)  	
                          move  particle  and  sample  next  interaction	
                          if  fission	
                                GDS_acc(score,  tally)  //  tally,  add  score  asynchronously	
                                add  new  source  sites  	
                end	
                          GDS_fence()  //  Synchronize  outstanding  operations    
                          resample  source  sites    &  estimate  eigenvalue	
                          if  (take_version)    GDS_ver_inc(tally)  //  Increment  version	
                                                                                  GDS_ver_inc(source_site)  //  Increment  version	
        end	
end	

X-stack PI Meeting:  Global-view Resilience (GVR) 

•  Create  Global  view  tallies	
•  Versioning:  259  LOC  (<1%)	
•  Forward  recovery:    250  (<1%)	
•  Overall  application:  30  KLOC	

14 May 28-29, 2014 
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Tally	Tally	

Monte  Carlo  “Compensating”  
Forward  Error  Recovery	

“Random”  
Sample	

Computation	

Statistics	

 Convergence?	

Tally	

Batch	

Monte  Carlo  
Simulation	

Initial	

Corrupt  
Tally	

Error 
detected !

X-stack PI Meeting:  Global-view Resilience (GVR) 
Versions	

Recovery	

Vn	 Vn-‐‑1	

Continue!
Sampling!

=	

Corrupt  
Tally	

=	 Good  
Tally	

Latent  or	
current	

Good	
Tally	

15 May 28-29, 2014 

OpenMC+GVR  Performance	
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Number  of  Processes	

GVR	

Tally  server	

41x	

98x	

New  record  scaling  	
for  OpenMC	

X-stack PI Meeting:  Global-view Resilience (GVR) 
N.  Dun,  H.  Fujita,  J.  Tramm,  A.  Chien,  and  A.  Siegel.  Data  Decomposition  in  Monte  Carlo  

Neutron  Transport  Simulations  using  Global  View  Arrays,  submired  for  publication,  May  2014	16 May 28-29, 2014 
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GVR  enables  Flexible  Recovery	

•  Immediate errors: Rollback   
•  Latent/Silent errors: multi-

version 
o  Application recovery using multiple 

streams 

•  Immediate + Latent: novel 
forward error recovery 
o  System or application recovery using 

approximation, compensation, 
recomputation, or other techniques 

•  Tune version frequency, data 
structure coverage, increased 
ABFT and forward error 
recovery for rising error rates 

X-stack PI Meeting:  Global-view Resilience (GVR) 

GVR’s  data-‐‑oriented  resilience  enables  flexible  error  recovery  and  
scaling  to  Exascale  resilience	

CR	

GVR:  	
Multi-‐‑version	
Multi-‐‑stream	

Immediate:  rollback	
      Latent:  fail	

Immediate:  rollback	
Latent:  rollback	

Immediate  +  Latent:  	
Forward  Error  recovery	

17 May 28-29, 2014 

(Comparison  to  State-‐‑of-‐‑Art)	

GVR  Gentle  Slope	

X-stack PI Meeting:  Global-view Resilience (GVR) 

GVR  enables  a  gentle  slope  to  Exascale  resilience  	

Code/
Application	

Size  
(LOC)	

Changed  
(LOC)	

Leverage  
Global  View	

Change  SW  
architecture  	

Trilinos/PCG	 300K	<1%	 Yes  	 No	

Trilinos/
Flexible  
GMRES	

300K	<1%	 Yes  	 No	

OpenMC	 30K	<2%	 Yes  	 No  	

ddcMD	 110K	<0.3%	 Yes  	 No  	

Chombo	 500K	<1%  	 Yes  	 No  	

18 May 28-29, 2014 
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Open  Resilience	
•  How to maximize recoverable errors? 
•  How to enable recovery based on any information? 

(HW,OS,runtime,programming model, application, ...) 

Scaling forward: 
o  Recover new types of errors? 
o  Recover in new algorithms? 
o  New algorithms and methods for recovery?  (forward recovery) 

•  => Need a resilience architecture that enables and 
rewards investment in error recovery 

X-stack PI Meeting:  Global-view Resilience (GVR) 19 May 28-29, 2014 

Unified  Signaling  and  Recovery    
(Cross-‐‑layer)	

•  Unified Signaling from HW, 
OS, Runtime, Application 
o  Fail stop => raise error and 

expose for flexible recovery 

•  Application-defined error 
checking and error 
handling 

application_check()!

runtime_check()!

OS_signal ()!

Hardware_error ()!

other()!

raise_error(gds, !
         error_desc)!

M
ap

pi
ng

	

Dispatch	

Correct	

Recompute	

Reload	

Rollback	

Approximate	

Restart	

Fail	

resume(gds)!

•  Custom x-layer error handling 
•  Prior Work: Sandia/UNM (Bridges, 

Brightwell,..), CIFTS/FTB (ANL, 
ORNL, etc.) + more... 

•  Paired notification and recovery 
routines [Silos] 

•  Exploit x-layer semantics 
•  Add more as resilience 

challenges increase 
X-stack PI Meeting:  Global-view Resilience (GVR) 20 May 28-29, 2014 
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Error  Handling  
Generalization  in  GVR	

•  Built open resilience in GVR, started building 
examples 
o  Discovered natural matches:  1-to-1 
o  Discovered large “semantic gap” across the layers 
o  How to span this gap? 

•  Discovered “generalization” of error recovery 
o  Example 1: ddcMD 
o  Example 2: Chombo 

•  How to maximize leverage from generalization? 
(create a resilience investment ecosystem) 

 

X-stack PI Meeting:  Global-view Resilience (GVR) 21 May 28-29, 2014 

Molecular  Dynamics:  miniMD,  ddcMD	
•  miniMD: a SNL mini-app, a version of LAMMPS 
•  ddcMD is the atomistic simulation developed by LLNL -- 

scalable and efficient.  

X-stack PI Meeting:  Global-view Resilience (GVR) 
LLNL  (Dave  Richards  &  Ignacio  

Laguna)	 22 May 28-29, 2014 
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ddcMD  x-‐‑layer  Error  Handling  
(original)	

main() { 
    simulation_loop() { 
        computation(); 
        if detects L1 cache parity error 
            set flag = true; 
        /* At designated rally point,  
           each task check the flag */ 
        if rally point {    
            if flag == true {  
                roll back; 
                continue; 
            } 
        } 
        /* snapshot state periodically */ 
        if (snapshot_point)    
            snapshot_state 
    } 
} 

X-stack PI Meeting:  Global-view Resilience (GVR) 23 May 28-29, 2014 

ddcMD  +  GVR	
main() { 
    /* store essential data structures in gds */ 
    GDS_alloc(&gds); 
    /* specify recovery function for gds */ 
    GDS_register_global_error_handler(gds, recovery_func); 
    simulation_loop() { 
        computation(); 
        error = check_func() /* finds the errors */ 
        if (error) { 
            error_descriptor = GDS_create_error_descriptor(GDS_ERROR_MEMORY) 
            /* signal error */ 
            /* trigger the global error handler for gds */ 
            GDS_raise_global_error(gds, error_descriptor); 
        } 
        if (snapshot_point){GDS_version_inc(gds); 
                            GDS_put(local_data_structure, gds);}; 
    } 
} 
/* Simple recovery function, rollback */ 
recovery_func(gds, error_desc) { 
    /* Read the latest snapshot into the core data structure */ 
    GDS_get(local_data_structure, gds); 
    GDS_resume_global(gds, error_desc); 
} 

X-stack PI Meeting:  Global-view Resilience (GVR) 
A.  Fang,  I.  Laguna,  D.  Richards,  and  A.  Chien.  “Applying  GVR  
to  molecular  dynamics:  ...”  CS  TR-‐‑2014-‐‑04,  Univ  of  Chicago.	24 May 28-29, 2014 
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Generalization  in  ddcMD	
•  Learn from prior x-layer experience 

o  Start: BG/L  L1 cache failure 
o  Replicated GBelll Prize functionality (1 month of 1st year graduate student) 

•  GVR’s Open Resilience casts error handling in a 
generalized error type 
o  HW trap L1 error => “don’t crash, set flag in user-space”; program stores “good 

state periodically”, polls flag, and rallies 
o  HW trap L1 error => “dont crash, signal data corruption using GVR” 

•  More checks added and grouped together 
o  Application checks (various ABFT, checksum, etc.) 
o  Other HW errors: DRAM, L2, L3, Interconnect, “processor check”, etc. 
o  Other SW errors: operating systems, communication, filesystem failures 

•  Result: Original L1 error recovery handler generalizes to 
broad range of errors 
o  Errors the handler designer “never heard of”; application leverage 
o   => further there are also other ways to respond... Refinement (system 

leverage) 

X-stack PI Meeting:  Global-view Resilience (GVR) 25 May 28-29, 2014 

Chombo  +  GVR	
•  Resilience for core AMR hierarchy 

o  Central to Chombo 
o  Lessons applicable to Boxlib (ExaCT co-design 

app) 

•  Multiple levels, each with own time-
step  

•  GVR used to version each level 
separately; exploits application-
level snapshot-restart 
o  Achieves data-corruption resilience for AMR 
o  => future: customize or localize recovery 

•  ~ 0.7K LOC change in >500K  
Chombo 
o  Most complex logic in saving global metadata in 

self-describing format 

X-stack PI Meeting:  Global-view Resilience (GVR) ExReDi/LBNL    (Dubey,  Van  Straalen)  	26 May 28-29, 2014 
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Open  Resilience  Insight:  Generalize  
Data  corruption  recovery	

•  Generalization: cooperative error handling across 
layers (a different kind of cross-layer) 
o  Start: traditional “data corruption” recovery in GVR;  
o  Data error signalled by HW (memory, L1, checksum) 
o  Recovers data and resumes computation (rollback, forward recovery – 

approximation) 
o  Inspired by Dubey’s prior work on ABFT forward recovery [FTXS’13] 

•  Idea: Can we transform a process crash in to data 
corruption recovery? 
o  Programmer writes error recovery handler for data corruption 
o  Winds up with an application that handles both data corruption and 

process crashes 

X-stack PI Meeting:  Global-view Resilience (GVR) 27 May 28-29, 2014 

Cross-‐‑layer  AMR  Recovery	 

Versioned	
Distributed  Arrays	 

GVR	 

MPI  (ULFM)	 
Notification	 

Refinem
ent	

X-stack PI Meeting:  Global-view 
Resilience (GVR) 

Process  Failure	

Application  Data	
Recovery	
-‐‑  What  versions	
-‐‑  How  to  reconstruct	
          (recompute,  approximate)	

PF  recover	

Data  Corruption	

Level  0	 

Level  1	 

Level  2	 

28 May 28-29, 2014 
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Cooperative  Cross-‐‑layer  
Recovery	

•  User-level Fault Mitigation (ULFM) 
o  Process crash error signaled (by system or heartbeat) 
o  ULFM Detect and recover communication substrate 
o  ULFM signals error through GVR Open Resilience system 

•  GVR Open resilience invokes Chombo’s GVR data 
corruption recovery code 
o  Detects which data collections are integral (global view distributed arrays) 
o  Picks and partially materializes the needed versions 
o  Recovers appropriately 

•  Programmer who built data corruption code gets 
process failure recovery “for free”  
o  Resilience investment in a code “yields dividends” 

•  => Example of generalization... and a Resilience Eco-
system 

X-stack PI Meeting:  Global-view Resilience (GVR) 

Demo  in  Resilience  Tech  Marketplace:  Data  corruption  
recovery,  process  fail  recovery,  data  corruption  –  all  with  one  

application  handler	 29 May 28-29, 2014 

Open  Resilience	
•  Connects error signaling and 

handling across layers 
o  Could coordinate resilience investment 

across layers 
o  Complements OSR: Argo/BEACON, Hobbes/

GIB, ... 

•  Portable investment 
(application) 

•  Portable investment (hardware 
vendors) 

•  Can we create a resilience 
ecosystem? 

X-stack PI Meeting:  Global-view Resilience (GVR) Er
ro
r  #
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5	
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30 May 28-29, 2014 
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GVR  Status	
•  Realized and Established GVR Model 

o  Usable and portable today, modest code change, software architecture 
compatible 

•  Gentle slope to Exascale resilience 
o  Multi-version, multi-stream model, evolution to higher error rates, forward error 

recovery 

•  GVR is application-controlled, data-oriented resilience  + 
latent errors, forward correction 
o  Contrast to CR: user-level data structures, multiple versions, multiple streams, 

application-controlled flexible recovery, x-layer recovery 
o  Contrast to CD: whole computation, end-to-end, data not the computation,  

hierarchy possible, but not required, flexible forward recovery, x-layer recovery 

•  Path forward to x-layer resilience eco-system 

X-stack PI Meeting:  Global-view Resilience (GVR) 31 May 28-29, 2014 

Next  Steps	
•  Preview release generally available, Sept 2014  

o  Numerous partner releases already 

•  Broaden/continue application and library work 
o  Establish and improve interface as stable and portable  
o  Incorporation in applications and libraries 

•  Engage X-stack programming models! 
•  Grow Open Resilience engagement with OSR, X-

stack runtime, programming model, FFwd 
architecture teams 

•  Exploit increasing opportunities in novel storage and 
complex memory hierarchies  

X-stack PI Meeting:  Global-view Resilience (GVR) 32 May 28-29, 2014 
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GVR  X-‐‑stack  Synergies	

•  Direct Application Programming Interface 
o  Co-existence, even targeted by other Runtimes 

•  Rich Solver Library Building Block 
•  Programming System Target  

X-stack PI Meeting:  Global-view Resilience (GVR) 

Applications	

GVR	...	...	

GVR	GVR	

Applications	

GVR	...	...	 GVR	...	...	

Petsc	 Trilinos	 ...	

Applications	

PM	
#1	

PM	
#2	

PM	
#3	

Yes!	
Yes!	 Come  &  Work	

With  us!	

OS/R	

33 May 28-29, 2014 

Call  to  Partnership	
•  GVR provides simple, portable, flexible 

mechanisms for resilience 
•  Exploiting GVR can be done with modest effort/

code, in many software structures 
•  Open Resilience offers opportunities for 

cooperative runtime, compiler, OS recovery 
•  Collective redundancy exposes many 

opportunities for optimization (and exploitation of 
novel storage and memory hierarchies) 

•  Software Availability 
o  Partner release (Sept 2013) 
o  Broad software release (Sept 2014) 

X-stack PI Meeting:  Global-view Resilience (GVR) 34 May 28-29, 2014 
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More  GVR  Information	
Basic API’s and Usage 
•  GVR Team. Gvr documentation, release 0.8.1-rc0. Technical Report 2014-06, University of Chicago, 

Department of Computer Science, 2014. 

•  GVR Team. How applications use gvr: Use cases. Technical Report 2014-05, University of Chicago, 
Department of Computer Science, 2014. 

Application Studies 
•  Nan Dun, Hajime Fujita, John R. Tramm, Andrew A. Chien, and Andrew R. Siegel. Data Decomposition in 

Monte Carlo Neutron Transport Simulations using Global View Arrays. Technical report, Department of 
Computer Science, University of Chicago, April 2014. Submitted for publication. 

•  Aiman Fang and Andrew A. Chien. Applying gvr to molecular dynamics: Enabling resilience for scientific 
computations. Technical Report TR-2014-04, Department of Computer Science, University of Chicago, 
April 2014. 

•  Zachary Rubenstein, Hajime Fujita, Ziming Zheng, and Andrew Chien. Error checking and snapshot-
based recovery in a preconditioned conjugate gradient solver. Technical Report TR- 2013-11, 
Department of Computer Science, University of Chicago, November 2013. 

•  Ziming Zheng, Andrew A. Chien, and Keita Teranishi. Fault tolerance in an inner-outer solver: A gvr-
enabled case study. In 11th International Meeting High Performance Computing for Computational 
Science-VECPAR 2014, 2014. 

GVR Architecture and Implementation Research 
•  Hajime Fujita, Nan Dun, Zachary A. Rubenstein, and Andrew A. Chien. Log-structured global array for 

efficient multi-version snapshots. In Submitted for publication, 2014. 

•  Guoming Lu, Ziming Zheng, and Andrew A. Chien. When is multi-version checkpointing needed? In 
Proceedings of the 3rd Workshop on Fault-tolerance for HPC at extreme scale, FTXS ’13, pages 49–56, 
New York, NY, USA, 2013. ACM. 

•  Wesley Bland, Aurelien Bouteiller, Thomas Herault, Joshua Hursey, George Bosilca, and JackJ. Dongarra. 
An evaluation of User-Level Failure Mitigation support in MPI. Computing, 95(12):1171–1184, 2013. 

X-stack PI Meeting:  Global-view Resilience (GVR) 35 May 28-29, 2014 
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