
5/28/14	

1	

“Exploiting Global View for
Resilience”

The Global View Resilience (GVR) Project
	

Andrew A. Chien, The University of Chicago and Argonne
National Laboratory

Pavan Balaji, Argonne National Laboratory
X-stack PI Meeting @ MIT

May 28, 2014

GVR Project Objectives
(Vision)	

•  Create and realize GVR model for Resilience:
Portable, Flexible, Application-Controlled Resilience

•  Application Studies: Demonstrate usable, scalable
resilience with Gentle Slope and Flexible forward
error recovery

•  Maximize recoverable errors (x-layer resilience)

X-stack PI Meeting: Global-view Resilience (GVR)

Create a gentle-‐‑slope to Exascale resilience	

2 May 28-29, 2014

5/28/14	

2	

GVR Concepts and API	
•  Create Global view structures

o  New, federation interfaces
o  GDS_alloc(...), GDS_create(...)!

•  Global view Data access
o  Data: GDS_put(), GDS_get()!
o  Consistency: GDS_fence(), GDS_wait(),...!
o  Accumulate: GDS_acc(), GDS_get_acc(), GDS_compare_and_swap()!

•  Versioning
o  Create: GDS_version_inc(), Navigate: GDS_get_version_number(),

GDS_move_to_newest(), ...!

•  Error handling
o  Application checking, signaling, correction: GDS_raise_error(),

GDS_register_local_error_handler()...!
o  System signaling, integrated recovery: GDS_raise_error(), GDS_resume()!

X-stack PI Meeting: Global-view Resilience (GVR)

Put Get Put

Check Error Repair

Versioned, multi-‐‑stream distributed arrays + streams are
portable resilience abstractions; x-‐‑layer to maximize

recoverable errors	

3 May 28-29, 2014

GVR Vision + Progress	
•  GVR Model: Portable, Flexible, Application Controlled

Resilience
o  Established model: use cases, extensive application partnership studies
o  Realized systems: several generations of prototypes, iteration informed by

application studies
o  Gentle slope (5 demonstrations, <1% code change, negligible overhead)
o  Scalable to Exascale resilience: High error rates and Latent and silent errors

•  Application Studies: Gentle Slope, Flexible forward error
recovery
o  Numerous studies; incremental adoption, useful today
o  Compatible with existing software architectures (app, library, programming system)
o  Enables exploitation of knowledge from all levels (app semantics-based recovery)
o  Enables all kinds of error recovery desired so far

•  Maximize Recoverable Errors (cross-Layer)
o  Defined Unified signaling and Handling framework
o  Numerous Examples of use
o  “Open Resilience” can catalyze a cross-layer resilience eco-system

X-stack PI Meeting: Global-view Resilience (GVR) 4 May 28-29, 2014

5/28/14	

3	

Simple Version Recovery:
Preconditioned Conjugate Gradient	

•  Version x “solution vector”
o  Restore x on error

•  Version p “direction vector”
o  Restore on error

•  Version A “linear system”
o  Restore on error

•  Restore from which version?
o  Most recent (immediately detected

errors)
o  Older version (latent or “silent” errors)

Unlike many other methods, CG functions only for symmetric matrices. The symmetry

of the matrix is used to simplify the algorithm. In a general Krylov subspace method, we

need to keep track of the entirety of the subspace over which we are currently minimizing.

Due to symmetry, CG needs only to keep track three vectors of length m: the current

approximate answer x, the current residual r, and the current direction of search p. Our

particular implementation also caches two iterations of the scalar ⇢ = (r, r). Note that r is

updated in-place, rather than being recalculated in each iteration from b�Ax. This means

that, if a fault occurs in the computation, the values of r and b� Ax may diverge.

The norm residual krk for CG is expected to converge at an exponential rate. In general,

each iteration of krk should be smaller than the previous iteration by some factor. The

convergence factor is dependent on the spectral condition number of A [50, p. 215].

2.1.2 Preconditioned Conjugate Gradient (PCG)

1: r = b� Ax

2: iter = 0
3: while (iter < max iter) and krk > tolerance do
4: iter = iter+1
5: z = M

�1
r

6: ⇢old = ⇢

7: ⇢ = (r, z)
8: � = ⇢/⇢old
9: p = z + �p

10: q = Ap

11: ↵ = ⇢/(p, q)
12: x = x+ ↵p

13: r = r � ↵q

14: end while

Figure 2.2: The preconditioned conjugate gradient algorithm is nearly identical. to CG,
except that the preconditioner M is applied to r once per iteration.

One approach to speeding up the convergence of CG is by applying a preconditioner M to

A and b and then solving the equation M

�1
Ax = M

�1
b [50, p. 276]. It is often less expensive

9

 A= ...

X-stack PI Meeting: Global-view Resilience (GVR) 5 May 28-29, 2014

Multi-‐‑stream in PCG: Matching
redundancy to need	

X-stack PI Meeting: Global-view Resilience (GVR)

	
	

Iteration	 1

A

p
2 3 4 5 6

0

1 2 3 4 5 60

1 2 30

x

Low redundancy	

High redundancy	

Medium redundancy	

6 May 28-29, 2014

5/28/14	

4	

Applying GVR to Flexible
GMRES	

Robust to minor Inner Solver errors	

Remove error in outer solver	
-‐‑  Restart, recompute	
-‐‑  Version recovery	
-‐‑  Various error rates	

Check: Residual decreasing	

X-stack PI Meeting: Global-view Resilience (GVR)

Joint w/ Mark Hoemmen,
Keita Teranishi, and Mike

Heroux of SNL	

Ziming Zheng, Andrew A. Chien, Keita Teranishi, "ʺFault
Tolerance in an Inner-‐‑Outer Solver: a GVR-‐‑enabled Case

Study"ʺ, in Proceedings of VECPAR 2014, July 2014. 	
7 May 28-29, 2014

Trilinos Library Hierarchy
+ GVR	

vector, matrix, and
graph classes	

Kernel Libraries	

Linear solver, nonlinear solver,
…	

Solver Libraries	

Scientific Applications	

PDES Circuits Inhomogeneous
Fluids

…

GVR	

Global data versioning
and protection 	

GVR Enabled 	
FT-‐‑solver	

Application resilience	

X-stack PI Meeting: Global-view Resilience (GVR)
Trilinos Sandia (Heroux,
Hoemmen, Teranishi)	8 May 28-29, 2014

5/28/14	

5	

GVR+Trilinos: Gentle
Slope Resilience	

•  <1% Trilinos
library Code
change (C++)	

•  23 lines PCG 	
Solver change	
	
•  25 lines Flexible

GMRES change	

X-stack PI Meeting: Global-view Resilience (GVR)
GVR’s design enables application and library resilience

with small code change.	 9 May 28-29, 2014

Overall Outcomes: Stalls, Convergence, and EE

Immediate mostly converges correct

Nop admits a high probability of EE

Residual-based trades low EE for high stall

High-frequency ABFT has low EE and low stall

Zachary Rubenstein (University of Chicago Computer Science)Error Checking and Snapshot-Based Recovery in a Preconditioned Conjugate Gradient SolverFebruary 13, 2014 21 / 38

X-stack PI Meeting: Global-view Resilience (GVR)
PCG Study, Rubenstein MS Thesis, March 2014	

10 May 28-29, 2014

5/28/14	

6	

Latent Error Recovery	
When multiple versions are useful
Impact on high-error rate regimes
Impact on difficult to detect errors

X-stack PI Meeting: Global-view Resilience (GVR)
 G. Lu, Z. Zheng, and A. Chien. When is multi-‐‑version checkpointing needed?
3rd Workshop on Fault-‐‑tolerance for HPC at extreme scale, FTXS ’13, 2013. 	

Multi-‐‑version increases efficiency	
at high error rates	

Multi-‐‑version critical for
difficult to detect errors	

Latent or “silent” error
model	

11 May 28-29, 2014

Efficient Versioning	
•  Different implementations (SW, HW, OS, Application)
•  Efficient storage and materialization
•  Leverages collective view
•  Exploit NVRAM, burst buffers, etc.

X-stack PI Meeting: Global-view Resilience (GVR)

RMA, competitive performance is challenging. Second, we
evaluate and compare the log-structured approach to the
traditional flat array approach using several micro-benchmarks
to measure communication latency, bandwidth, and version
increment cost. Finally we evaluate both log-structured and
flat implementations using three full applications, OpenMC,
canneal, and preconditioned conjugate-gradient. This last eval-
uation is done for a DRAM-only system, and a system that
uses DRAM and SSD/Flash to store versions.

Specific contributions include:

• design and build a log-structured implementation of
arrays that supports efficient versioning and RMA
access

• evaluation of versioning in flat (traditional) and log-
structured implementations using a variety of mi-
crobenchmarks shows that the log-structured can create
versions as much as 10x faster even for 1MB array,
introducing versions in an unobtrusive fashion

• further, in systems with RMA, log-structured imple-
mentations can achieve low latency and high bandwidth
for small access (< 128B or larger if block size is
increased) matching flat implementations,

• overall, the micro-benchmarks indicate that log-based
implementation deliver equal performance on reads
(within 74%), but as expected incur additional over-
heads on writes (from 7% to 99%). In short, overall
performance comparisons will depend on workload

• evaluation using several application benchmarks shows
that versioning runtime overheads can be negligible
(3.7% for PCG, 4.7% for OpenMC), and manageable
for the other (26% canneal). This means that versioning
for resilience may be viable in many settings.

• in all cases, where there is opportunity in the access
patterns, the log-based approach captures potential
memory usage savings (31% in canneal), in some
cases over 90%.

• adding NVRAM or SSD to the system resources,
experiments show that log-structured approach increase
tolerance of NVRAM limitations such as low write
bandwidth or limited lifetime, improving performance
by 20% (OpenMC, with SSD).

II. BACKGROUND

A. Global View Resilience

The Global View Resilience (GVR) project supports a new
model of application resilience built on versioned arrays (multi-
version). A programmer can select a global array [19] for
versioning and control timing and frequency (multi-stream).
Access to these arrays is provided through dedicated library
calls such as put or get. The timeline of application state created
by versioned arrays can then be used to both check application
data for errors, and to recover from said errors (application-
customized checking and recovery). Because the GVR library
operates at the level of application arrays, it is both convenient
to use and portable, enabling convenient portable resilience.

Processes

Put Get

Versions

Fig. 1. Multi-version global array in GVR

0 10 20 30

0

10

20

30

40

Version (# of iterations)

To
ta

lb
lo

ck
s

up
da

te
d

(%
)

bs=64B
bs=128B
bs=256B
bs=512B

Fig. 2. The canneal benchmark in the PARSEC benchmark suite modifies a
limited portion of the array per iteration

Its critical to understand how GVR global array are
versioned (see Figure 1), a process in which an application
determines when a version should be created by calling
version inc(), and multiple copies of the array are persisted.
These copies can be used later by the application for error
recovery, and while the GVR system provides consistent
versions of single array, any coordination across multiple arrays
(i.e. across the multiple streams) is an application responsibility.

Because errors can be difficult or costly to detect, they are
sometimes latent, and thus multiple versions can be used to
improve overall performance and reliability [20]. This capability
is beyond that of traditional checkpoint/restart systems that
only maintain a single checkpoint; if there are latent errors that
corrupt the checkpoint, there is no way to recover the system.
Lu et al. show when multi-version checkpointing is useful
[20] across a range of error and detection latency assumptions.
The application-level abstraction of multi-version arrays creates
a wide variety of opportunities for flexible error checking
and recovery exploiting application semantics. However, those
topics are the subject of other research studies.

B. Preserving Multiple Versions Efficiently

A central challenge for the multi-version foundation for
resilience is how to implement versioning efficiently. The
traditional method is to to create an copy of the array for
each new version; we call this the flat array approach. GVR
limits modification to the current version of the array, limiting
older versions to read-only which opens numerous avenues for
optimization.

Our studies show that many applications modify only

Metadata Data

Version 0 Version 1
Initial
Data

Log head Log tail

Tail pointer

Fig. 3. In-memory data structure of log-structured array

part of an array between versions. For example, Figure 2
shows the behavior of the canneal benchmark (from PARSEC
[21]). We instrumented accesses to the main data structure
called netlist::_elements, a contiguous array buffer,
to understand modification patterns using the PIN tool [22].
This structure is the core needed for resilient execution. We
assume that the array is divided into fixed-size blocks, and
mark each block if the contents of the block is modified. Figure
2 shows that only a small amount of the array is updated during
each iteration. Because the canneal benchmark runs for several
iterations with a barrier synchronization at the end of each
iteration, it naturally corresponds to a version. Our results show
that a small fraction of the array is updated in each iteration,
creating opportunity for optimization.

III. DESIGN

We present the design of log-structured implementations for
global arrays. We first describe the in-memory data structure,
then two implementations—RMA-based and message-based
protocol.

A. Data Distribution

Each global array is a distributed collection of buffers that
together comprise a single logical array. We assume that data
distributions map each range of array indices to a corresponding
remote memory buffer, and we assume the data distribution
does not change across versions. For a given operation, the
memory buffer (target) we need to access may be in a remote
node. We use the term “client” to indicate the originating node
and “server” for the target node.

B. Data structures

Figure 3 illustrates the in-memory log data structure of a
log-structured array. A log-structured array is constructed from
a single contiguous memory region, dividing it into two parts—
data and metadata blocks. Within the log-structured array, a
region of the global array is divided into fixed-size blocks, each
storing a portion of user data. Each metadata block contains a
pointer to a user data block. Thus for a given array size, we
have a fixed number of metadata blocks for each version. For
example, given that L is the length of array and B is block
size, single version requires dL/Be metadata blocks.

C. Operational semantics

There are two cases for a put operation. In the base case,
new data blocks are allocated at the tail of the log to record
the modified data. Then the corresponding metadata blocks

are updated, pointing to the newly allocated blocks. If the put
operation is overwriting data that has already been modified
since the most recent version creation, then it simply overwrites
the current data block. No new allocation is required. Thus new
versions are created incrementally based on new modifications
of a region.

Upon version inc(), we can create a logical new version by
simply creating a new set of metadata blocks for the version
(similar to a copy-on-write process creation). The new metadata
blocks are simply appended to the tail of the log. And the
location of the metadata (current version), but not their contents
is broadcast to all of the clients. At this moment, all metadata
blocks are identical to those of the previous version.

If there are concurrent and non-conflicting put and get oper-
ations, the implementation must merge the updates and capture
all modifications. GVR provides synchronization operations to
order conflicting updates, and if operations are not well-ordered,
then arbitrary interleavings of update are acceptable.

D. Data Access Protocols

A key feature of modern cluster networks is RDMA (Re-
mote Direct Memory Access). RDMA can be high performance
because it is 1-sided, not requiring involvement from the remote
CPU. However, implementing complex data manipulations
with RDMA is complicated, and often not the most efficient.
Therefore we present two access protocols, one with RDMA
and the other without RDMA. Hereafter we use more generic
term RMA (Remote Memory Access), instead of RDMA.

1) RMA-based Protocol: Uses RMA operations only, with
all data operations implemented by clients. The server exposes
memory regions through RMA, but performs no operations.

a) Metadata cache: To access array data, a client needs
the metadata blocks to find the location of the needed data
blocks. Upon access, the client first checks the cache for the
needed metadata, and if necessary fetches it from the remote
node. Because the metadata may be correct even across a
version inc(), the metadata cache is not flushed at new version
create. Instead, it is checked upon access, and if determined to
be stale (failed access), then is it updated.

As described in III-C, each metadata block is updated at
most once in a single version, This means if a metadata block
is already updated in the latest version, it will never change.
Therefore, if a metadata cache is for the updated block, that
cache is guaranteed to be always valid.

As a result, each metadata cache has two states: valid and
maybe invalid. Each client can determine the state of the cache
without involving communications. Upon a version increment,
all processes exchange the position of the log tail. If a metadata
cache points to a location after the known log tail, that cache
is valid because that data block is allocated in that version.

b) Put: RMA put requires a relatively complex proce-
dure illustrated in Figure 4. Log area is exposed via the RMA
interface as a single contiguous memory buffer. At a fixed
location in the area, there is a special integer field to contain
tail pointer of the log.

1) A client first tries to increment the tail pointer to
allocate a new data block at the end of the log. This
is done by an atomic operation.

2 4 8 16 32

2,000

2,500

3,000

Number of Processes

C
al

cu
la

tio
n

R
at

e
(n

eu
tro

ns
/s

/p
ro

ce
ss

) Flat-RMA (DRAM)
Flat-RMA (DRAM+NVRAM)
Flat-RMA (DRAM+SSD)
Log-RMA (DRAM)
Log-RMA (DRAM+NVRAM)
Log-RMA (DRAM+SSD)

Fig. 9. OpenMC Performance with NVRAM emulation (computation rate)

Figure 8 shows overall results of OpenMC. Log-RMA
performs almost as good as Flat-RMA. In 32-node case, Log-
RMA is just 4.7% slower compared to Flat-RMA. While
achieving similar performance, log-structured array consumed
14.5% less memory to preserve versions, as shown in Figure
14.

Figure 9 compares performances when NVRAM or SSD
is introduced in the system. Since the tally size per process
shrinks as the number of processes increases, results are plotted
in per-process performance. Performance difference is most
significant in 2-process case where each process holds the
biggest size of data. In 2-process case, Flat-RMA performance
is significantly dropped when NVRAM or SSD is introduced
in the system. However for Log-RMA, NVRAM or SSD adds
smaller impact to the performance. In the most extreme case for
2 processes, where SSD is introduced, Log-RMA outperforms
Flat-RMA by 20%. This is because Flat-RMA is blocked at
slow memory copy at each version increment while Log-RMA
is not.

2) PCG Solver: Preconditioned Conjugate Gradient method
(PCG) is a common way to solve linear systems (i.e. find
x in Ax = b) [27]. The PCG algorithm is a three-term
recursion, which means that, in each iteration, three vectors
are recalculated based on the values of these vectors from the
previous iteration. Our implementation uses the linear algebra
primitives Trilinos library [28], [29]. The vectors used in the
three-term recursion are stored in a customized variant of a
Trilinos Vector class that supports preservation and restoration
of values via a GDS object. In the course of computation, one
snapshot of each of these vectors is stored at every iteration.
Total number of versions (= number of iterations) depends on
the number of total number of processes, ranging from 114
(for 2 processes) to 141 (for 32 processes). For this study, we
use for A a sparse matrix derived from the HPCG benchmark
[30] of size 1000000⇥ 1000000.

Figure 10 shows the result of the PCG solver experiment.
This program shows a quite unstable behavior when the number
of processes becomes more than eight, so we pick the most
stable run among three trials. The Log-RMA result is pretty
close to Flat-RMA performance, even in the worst case the
additional overhead is just 3.7%. This program creates versions
more than 100 times during the run, the versioning cost is

2 4 8 16 32

2

4

6

8

Number of Processes

Ex
ec

ut
io

n
Ti

m
e

(s
)

Flat-RMA Flat-msg
Log-RMA Log-msg

Fig. 10. Preconditioned conjugate-gradient (PCG) solver runtime (seconds)

2 4 8 16 32

5

10

Number of Processes

Ex
ec

ut
io

n
Ti

m
e

(s
)

Flat-RMA (DRAM)
Flat-RMA (DRAM+NVRAM)
Log-RMA (DRAM)
Log-RMA (DRAM+NVRAM)

Fig. 11. Preconditioned conjugate gradient (PCG) solver runtime with
NVRAM emulation (seconds)

important. As shown in Figure 11, putting slower NVRAM into
the system heavily affects the performance. In this experiment
even Log-RMA is affected by NVRAM, possibly because
versioning frequency is too high. For this application, there is no
memory savings by Log-structured array because it overwrites
the entire region for every version.

3) canneal: Third application benchmark is a synthesis
benchmark based on canneal from the PARSEC benchmark
suite. It is a multi-threaded program which simulates an
optimization process of an electric circuit. It has an array
called netlist::_element, which is shared among all
worker threads. That array stores a huge list of elements of a
circuit, then the canneal program tries to swap two randomly-
chosen elements. If this swap improves the circuit, then the
result of swapping is written back to the array. The goal of
this benchmark is to reproduce the same access pattern to the
array using GVR.

To faithfully mimic the memory access patterns of real
applications, we developed a trace-replay framework to eval-
uate the performance of GVR arrays without rewriting the
applications with GVR library. First we extract the memory
access history of specified data structures by using PIN tool[22].
The interested data structures are marked up by inserting

Flat (Traditional)	 Log-‐‑structured	
Comparative Studies 	
with applications +	
varied memory hierarchies	

 H. Fujita, N. Dun, Z. Rubenstein, and A. Chien. Log-‐‑structured global array
for efficient multi-‐‑version snapshots. Uchicago CS Tech Report, May 2014	 12 May 28-29, 2014

5/28/14	

7	

Fission

Elas)c

Inelas)c

CESAR’s Nuclear Reactor Coupled Neutronics/Hydraulics Problem

 Vessel Æ Core Æ Fuel Assembly Æ Fuel Rod Æ Nozzles/Spacer Æ Fuel Pellet
(14 m x 4.5 m) (4 m x 4 m) (4 m x 20 cm) (4 m x 1 cm) (20 cm x 4 cm) (1 cm x 1.5 cm)

ASCAC Meeting, March 31, 2013 5
5

Monte Carlo Neutron Transport (OpenMC)	

•  High fidelity, computation intensive and large memory (100GB~ cross
sections and 1TB~ tally data)

•  Particle-based parallelization is used with data decomposition
•  Partition tally data by global array
•  OpenMC: best scaling production code
•  DOE CESAR co-design center “co-design application”

X-stack PI Meeting: Global-view Resilience (GVR) ANL/CESAR (Siegel, Tramm) 	13 May 28-29, 2014

Adding Resilience to
OpenMC with GVR	

Initialize initial neutron positions	
GDS_create(tally & source_site); //Create global tally array and source sites	
for each batch	
 for each particle in batch	
 while (not absorbed) 	
 move particle and sample next interaction	
 if fission	
 GDS_acc(score, tally) // tally, add score asynchronously	
 add new source sites 	
 end	
 GDS_fence() // Synchronize outstanding operations
 resample source sites & estimate eigenvalue	
 if (take_version) GDS_ver_inc(tally) // Increment version	
 GDS_ver_inc(source_site) // Increment version	
 end	
end	

X-stack PI Meeting: Global-view Resilience (GVR)

•  Create Global view tallies	
•  Versioning: 259 LOC (<1%)	
•  Forward recovery: 250 (<1%)	
•  Overall application: 30 KLOC	

14 May 28-29, 2014

5/28/14	

8	

Tally	Tally	

Monte Carlo “Compensating”
Forward Error Recovery	

“Random”
Sample	

Computation	

Statistics	

 Convergence?	

Tally	

Batch	

Monte Carlo
Simulation	

Initial	

Corrupt
Tally	

Error
detected !

X-stack PI Meeting: Global-view Resilience (GVR)
Versions	

Recovery	

Vn	 Vn-‐‑1	

Continue!
Sampling!

=	

Corrupt
Tally	

=	 Good
Tally	

Latent or	
current	

Good	
Tally	

15 May 28-29, 2014

OpenMC+GVR Performance	

1.00E+03	

1.00E+04	

1.00E+05	

1.00E+06	

1	 2	 4	 8	 16	 32	 64	 128	 256	

C
al
cu
la
tio
n
R
at
e
(n
eu
tr
on
s/
se
c)
	

Number of Processes	

GVR	

Tally server	

41x	

98x	

New record scaling 	
for OpenMC	

X-stack PI Meeting: Global-view Resilience (GVR)
N. Dun, H. Fujita, J. Tramm, A. Chien, and A. Siegel. Data Decomposition in Monte Carlo

Neutron Transport Simulations using Global View Arrays, submired for publication, May 2014	16 May 28-29, 2014

5/28/14	

9	

GVR enables Flexible Recovery	

•  Immediate errors: Rollback
•  Latent/Silent errors: multi-

version
o  Application recovery using multiple

streams

•  Immediate + Latent: novel
forward error recovery
o  System or application recovery using

approximation, compensation,
recomputation, or other techniques

•  Tune version frequency, data
structure coverage, increased
ABFT and forward error
recovery for rising error rates

X-stack PI Meeting: Global-view Resilience (GVR)

GVR’s data-‐‑oriented resilience enables flexible error recovery and
scaling to Exascale resilience	

CR	

GVR: 	
Multi-‐‑version	
Multi-‐‑stream	

Immediate: rollback	
 Latent: fail	

Immediate: rollback	
Latent: rollback	

Immediate + Latent: 	
Forward Error recovery	

17 May 28-29, 2014

(Comparison to State-‐‑of-‐‑Art)	

GVR Gentle Slope	

X-stack PI Meeting: Global-view Resilience (GVR)

GVR enables a gentle slope to Exascale resilience 	

Code/
Application	

Size
(LOC)	

Changed
(LOC)	

Leverage
Global View	

Change SW
architecture 	

Trilinos/PCG	 300K	<1%	 Yes 	 No	

Trilinos/
Flexible
GMRES	

300K	<1%	 Yes 	 No	

OpenMC	 30K	<2%	 Yes 	 No 	

ddcMD	 110K	<0.3%	 Yes 	 No 	

Chombo	 500K	<1% 	 Yes 	 No 	

18 May 28-29, 2014

5/28/14	

10	

Open Resilience	
•  How to maximize recoverable errors?
•  How to enable recovery based on any information?

(HW,OS,runtime,programming model, application, ...)

Scaling forward:
o  Recover new types of errors?
o  Recover in new algorithms?
o  New algorithms and methods for recovery? (forward recovery)

•  => Need a resilience architecture that enables and
rewards investment in error recovery

X-stack PI Meeting: Global-view Resilience (GVR) 19 May 28-29, 2014

Unified Signaling and Recovery
(Cross-‐‑layer)	

•  Unified Signaling from HW,
OS, Runtime, Application
o  Fail stop => raise error and

expose for flexible recovery

•  Application-defined error
checking and error
handling

application_check()!

runtime_check()!

OS_signal ()!

Hardware_error ()!

other()!

raise_error(gds, !
 error_desc)!

M
ap

pi
ng

	

Dispatch	

Correct	

Recompute	

Reload	

Rollback	

Approximate	

Restart	

Fail	

resume(gds)!

•  Custom x-layer error handling
•  Prior Work: Sandia/UNM (Bridges,

Brightwell,..), CIFTS/FTB (ANL,
ORNL, etc.) + more...

•  Paired notification and recovery
routines [Silos]

•  Exploit x-layer semantics
•  Add more as resilience

challenges increase
X-stack PI Meeting: Global-view Resilience (GVR) 20 May 28-29, 2014

5/28/14	

11	

Error Handling
Generalization in GVR	

•  Built open resilience in GVR, started building
examples
o  Discovered natural matches: 1-to-1
o  Discovered large “semantic gap” across the layers
o  How to span this gap?

•  Discovered “generalization” of error recovery
o  Example 1: ddcMD
o  Example 2: Chombo

•  How to maximize leverage from generalization?
(create a resilience investment ecosystem)

X-stack PI Meeting: Global-view Resilience (GVR) 21 May 28-29, 2014

Molecular Dynamics: miniMD, ddcMD	
•  miniMD: a SNL mini-app, a version of LAMMPS
•  ddcMD is the atomistic simulation developed by LLNL --

scalable and efficient.

X-stack PI Meeting: Global-view Resilience (GVR)
LLNL (Dave Richards & Ignacio

Laguna)	 22 May 28-29, 2014

5/28/14	

12	

ddcMD x-‐‑layer Error Handling
(original)	

main() {
 simulation_loop() {
 computation();
 if detects L1 cache parity error
 set flag = true;
 /* At designated rally point,
 each task check the flag */
 if rally point {
 if flag == true {
 roll back;
 continue;
 }
 }
 /* snapshot state periodically */
 if (snapshot_point)
 snapshot_state
 }
}

X-stack PI Meeting: Global-view Resilience (GVR) 23 May 28-29, 2014

ddcMD + GVR	
main() {
 /* store essential data structures in gds */
 GDS_alloc(&gds);
 /* specify recovery function for gds */
 GDS_register_global_error_handler(gds, recovery_func);
 simulation_loop() {
 computation();
 error = check_func() /* finds the errors */
 if (error) {
 error_descriptor = GDS_create_error_descriptor(GDS_ERROR_MEMORY)
 /* signal error */
 /* trigger the global error handler for gds */
 GDS_raise_global_error(gds, error_descriptor);
 }
 if (snapshot_point){GDS_version_inc(gds);
 GDS_put(local_data_structure, gds);};
 }
}
/* Simple recovery function, rollback */
recovery_func(gds, error_desc) {
 /* Read the latest snapshot into the core data structure */
 GDS_get(local_data_structure, gds);
 GDS_resume_global(gds, error_desc);
}

X-stack PI Meeting: Global-view Resilience (GVR)
A. Fang, I. Laguna, D. Richards, and A. Chien. “Applying GVR
to molecular dynamics: ...” CS TR-‐‑2014-‐‑04, Univ of Chicago.	24 May 28-29, 2014

5/28/14	

13	

Generalization in ddcMD	
•  Learn from prior x-layer experience

o  Start: BG/L L1 cache failure
o  Replicated GBelll Prize functionality (1 month of 1st year graduate student)

•  GVR’s Open Resilience casts error handling in a
generalized error type
o  HW trap L1 error => “don’t crash, set flag in user-space”; program stores “good

state periodically”, polls flag, and rallies
o  HW trap L1 error => “dont crash, signal data corruption using GVR”

•  More checks added and grouped together
o  Application checks (various ABFT, checksum, etc.)
o  Other HW errors: DRAM, L2, L3, Interconnect, “processor check”, etc.
o  Other SW errors: operating systems, communication, filesystem failures

•  Result: Original L1 error recovery handler generalizes to
broad range of errors
o  Errors the handler designer “never heard of”; application leverage
o  => further there are also other ways to respond... Refinement (system

leverage)

X-stack PI Meeting: Global-view Resilience (GVR) 25 May 28-29, 2014

Chombo + GVR	
•  Resilience for core AMR hierarchy

o  Central to Chombo
o  Lessons applicable to Boxlib (ExaCT co-design

app)

•  Multiple levels, each with own time-
step

•  GVR used to version each level
separately; exploits application-
level snapshot-restart
o  Achieves data-corruption resilience for AMR
o  => future: customize or localize recovery

•  ~ 0.7K LOC change in >500K
Chombo
o  Most complex logic in saving global metadata in

self-describing format

X-stack PI Meeting: Global-view Resilience (GVR) ExReDi/LBNL (Dubey, Van Straalen) 	26 May 28-29, 2014

5/28/14	

14	

Open Resilience Insight: Generalize
Data corruption recovery	

•  Generalization: cooperative error handling across
layers (a different kind of cross-layer)
o  Start: traditional “data corruption” recovery in GVR;
o  Data error signalled by HW (memory, L1, checksum)
o  Recovers data and resumes computation (rollback, forward recovery –

approximation)
o  Inspired by Dubey’s prior work on ABFT forward recovery [FTXS’13]

•  Idea: Can we transform a process crash in to data
corruption recovery?
o  Programmer writes error recovery handler for data corruption
o  Winds up with an application that handles both data corruption and

process crashes

X-stack PI Meeting: Global-view Resilience (GVR) 27 May 28-29, 2014

Cross-‐‑layer AMR Recovery	

Versioned	
Distributed Arrays	

GVR	

MPI (ULFM)	
Notification	

Refinem
ent	

X-stack PI Meeting: Global-view
Resilience (GVR)

Process Failure	

Application Data	
Recovery	
-‐‑  What versions	
-‐‑  How to reconstruct	
 (recompute, approximate)	

PF recover	

Data Corruption	

Level 0	

Level 1	

Level 2	

28 May 28-29, 2014

5/28/14	

15	

Cooperative Cross-‐‑layer
Recovery	

•  User-level Fault Mitigation (ULFM)
o  Process crash error signaled (by system or heartbeat)
o  ULFM Detect and recover communication substrate
o  ULFM signals error through GVR Open Resilience system

•  GVR Open resilience invokes Chombo’s GVR data
corruption recovery code
o  Detects which data collections are integral (global view distributed arrays)
o  Picks and partially materializes the needed versions
o  Recovers appropriately

•  Programmer who built data corruption code gets
process failure recovery “for free”
o  Resilience investment in a code “yields dividends”

•  => Example of generalization... and a Resilience Eco-
system

X-stack PI Meeting: Global-view Resilience (GVR)

Demo in Resilience Tech Marketplace: Data corruption
recovery, process fail recovery, data corruption – all with one

application handler	 29 May 28-29, 2014

Open Resilience	
•  Connects error signaling and

handling across layers
o  Could coordinate resilience investment

across layers
o  Complements OSR: Argo/BEACON, Hobbes/

GIB, ...

•  Portable investment
(application)

•  Portable investment (hardware
vendors)

•  Can we create a resilience
ecosystem?

X-stack PI Meeting: Global-view Resilience (GVR) Er
ro
r #
6	

Er
ro
r #
2	

Er
ro
r #
3	

Er
ro
r #
4	

Er
ro
r #
1	

Er
ro
r #
5	

Ha
nd
ler
 A
	

Ha
nd
ler
 D
	

Ha
nd
ler
 B
	

Ha
nd
ler
 M
	

Ha
nd
ler
 C
	

30 May 28-29, 2014

5/28/14	

16	

GVR Status	
•  Realized and Established GVR Model

o  Usable and portable today, modest code change, software architecture
compatible

•  Gentle slope to Exascale resilience
o  Multi-version, multi-stream model, evolution to higher error rates, forward error

recovery

•  GVR is application-controlled, data-oriented resilience +
latent errors, forward correction
o  Contrast to CR: user-level data structures, multiple versions, multiple streams,

application-controlled flexible recovery, x-layer recovery
o  Contrast to CD: whole computation, end-to-end, data not the computation,

hierarchy possible, but not required, flexible forward recovery, x-layer recovery

•  Path forward to x-layer resilience eco-system

X-stack PI Meeting: Global-view Resilience (GVR) 31 May 28-29, 2014

Next Steps	
•  Preview release generally available, Sept 2014

o  Numerous partner releases already

•  Broaden/continue application and library work
o  Establish and improve interface as stable and portable
o  Incorporation in applications and libraries

•  Engage X-stack programming models!
•  Grow Open Resilience engagement with OSR, X-

stack runtime, programming model, FFwd
architecture teams

•  Exploit increasing opportunities in novel storage and
complex memory hierarchies

X-stack PI Meeting: Global-view Resilience (GVR) 32 May 28-29, 2014

5/28/14	

17	

GVR X-‐‑stack Synergies	

•  Direct Application Programming Interface
o  Co-existence, even targeted by other Runtimes

•  Rich Solver Library Building Block
•  Programming System Target

X-stack PI Meeting: Global-view Resilience (GVR)

Applications	

GVR	

GVR	GVR	

Applications	

GVR	 GVR	

Petsc	 Trilinos	 ...	

Applications	

PM	
#1	

PM	
#2	

PM	
#3	

Yes!	
Yes!	 Come & Work	

With us!	

OS/R	

33 May 28-29, 2014

Call to Partnership	
•  GVR provides simple, portable, flexible

mechanisms for resilience
•  Exploiting GVR can be done with modest effort/

code, in many software structures
•  Open Resilience offers opportunities for

cooperative runtime, compiler, OS recovery
•  Collective redundancy exposes many

opportunities for optimization (and exploitation of
novel storage and memory hierarchies)

•  Software Availability
o  Partner release (Sept 2013)
o  Broad software release (Sept 2014)

X-stack PI Meeting: Global-view Resilience (GVR) 34 May 28-29, 2014

5/28/14	

18	

More GVR Information	
Basic API’s and Usage
•  GVR Team. Gvr documentation, release 0.8.1-rc0. Technical Report 2014-06, University of Chicago,

Department of Computer Science, 2014.

•  GVR Team. How applications use gvr: Use cases. Technical Report 2014-05, University of Chicago,
Department of Computer Science, 2014.

Application Studies
•  Nan Dun, Hajime Fujita, John R. Tramm, Andrew A. Chien, and Andrew R. Siegel. Data Decomposition in

Monte Carlo Neutron Transport Simulations using Global View Arrays. Technical report, Department of
Computer Science, University of Chicago, April 2014. Submitted for publication.

•  Aiman Fang and Andrew A. Chien. Applying gvr to molecular dynamics: Enabling resilience for scientific
computations. Technical Report TR-2014-04, Department of Computer Science, University of Chicago,
April 2014.

•  Zachary Rubenstein, Hajime Fujita, Ziming Zheng, and Andrew Chien. Error checking and snapshot-
based recovery in a preconditioned conjugate gradient solver. Technical Report TR- 2013-11,
Department of Computer Science, University of Chicago, November 2013.

•  Ziming Zheng, Andrew A. Chien, and Keita Teranishi. Fault tolerance in an inner-outer solver: A gvr-
enabled case study. In 11th International Meeting High Performance Computing for Computational
Science-VECPAR 2014, 2014.

GVR Architecture and Implementation Research
•  Hajime Fujita, Nan Dun, Zachary A. Rubenstein, and Andrew A. Chien. Log-structured global array for

efficient multi-version snapshots. In Submitted for publication, 2014.

•  Guoming Lu, Ziming Zheng, and Andrew A. Chien. When is multi-version checkpointing needed? In
Proceedings of the 3rd Workshop on Fault-tolerance for HPC at extreme scale, FTXS ’13, pages 49–56,
New York, NY, USA, 2013. ACM.

•  Wesley Bland, Aurelien Bouteiller, Thomas Herault, Joshua Hursey, George Bosilca, and JackJ. Dongarra.
An evaluation of User-Level Failure Mitigation support in MPI. Computing, 95(12):1171–1184, 2013.

X-stack PI Meeting: Global-view Resilience (GVR) 35 May 28-29, 2014

Acknowledgements	
•  GVR Team: Hajime Fujita, Zachary Rubenstein, Guoming

Lu (UC->UESTC), Aiman Fang, Ziming Zheng (UC), Pavan
Balaji, James Dinan (Argonne->Intel), Pete Beckman,
Kamil Iskra, (ANL), Robert Schreiber (HP), and application
partners Andrew Siegel (Argonne/CESAR), Jeff
Hammond (Argonne/ALCF/NWChem), Mike Heroux and
Mark Hoemmen (Sandia), Dave Richards (LLNL), Anshu
Dubey and Brian Van Straalen (LBNL)

•  Department of Energy, Office of Science, Advanced
Scientific Computing Research DE-SC0008603 and DE-
AC02-06CH11357

•  For more information: http://gvr.cs.uchicago.edu/

X-stack PI Meeting: Global-view Resilience (GVR) 36 May 28-29, 2014

