D-TEc B w

Techniques for Building Domain Specific Languages (DSLs)

Daniel J. Quinlan ¢ Lawrence Livermore National Laboratory (Lead PI)

Co-PIs and Institutions: Massachusetts Institute of Technology: Saman Amarasinghe, Armando Solar-Lezama, Adam
Chlipala, Srinivas Devadas, Una-May, O’Reilly, Nir Shavit, Youssef Marzouk; Rice University: John Mellor-Crummey &
Vivek Sarkar; IBM Watson: Vijay Saraswat & David Grove; Ohio State University: P. Sadayappan & Atanas Rountev;
University of California at Berkeley: Ras Bodik; University of Oregon: Craig Rasmussen; Lawrence Berkeley National
Laboratory: Phil Colella; University of California at San Diego: Scott Baden.

100

90

80

70

60

50

40

30

20

10

Comparing ROSE to commercial compilers

(lower is better)

Automated Stencil GPU Code Generation Execution Time (s)

s Sequential
i HMPP

PGI
e ROSE
wli—-Qpenmp

@i HMPP Collapse

ROSE Collapse

256x256

128x128 512x512 1024x1024 2048x2048

Matrix size (float)

Impact

Simplify how to develop future applications on expected complex Exascale
architectures. Domain Specific Languages (DSLs) provide tailored high-level
approaches to the development of new software, and removes the burden of
exploiting complex machine resources from the application developer.

DTEC makes it easier to build DSLs and have multiple DSLs cooperate.

Novel Ideas

Provide building blocks to improve the productivity of scientists and
engineers:

¢ Enabling custom programming models for specific problem domains

e Tailoring applications for future architectures with compiler
technology

¢ Introducing automation to High Performance Computing (HPC)

Develop an integrated solution that enables scientists to harness the power
of emerging supercomputers

Accomplishments

¢ Building blocks for construction of programming models (GPU code gen,
figure)

e A full Fortran 2008 SDF grammar for use in Rosebud

e Complete definition of a prototype DSL using RDL

e Definition of SDSL domain-specific language for stencil computations

¢ Polyhedral compiler optimization infrastructure in ROSE

* Public release of X10 2.4 (includes C++ API to APGAS runtime)

e X10 implementation of MCCK proxy app (CESAR)

e Demonstrated proxy applications: Geometric multi-grid (3D), 2D hydro
method

¢ Stand-alone prototype of optimizing compiler for GPU code generation for
SDSL

e Multi-target compiler optimization framework for stencil-based DSLs

¢ Initial implementations of "grammars" for Fortran, C++, and SDSL - a domain
computations within HPC

specific language for expressing common "stenci
e Program analysis and source-to-source transformation support

e Compiler-based tools (e.g. auto-parallelization, support for HW simulators)

U.S. DEPARTMENT OF Office of

o ENERGY Science

|[® Lawrence Livermore (O
National Laboratory

B ~ AL T8 T O
e O (1
e (N 1A

I 1 I i1 UNIVERSITY

September 2013

D-TECc B

Techniques for Building Domain Specific

w

Languages (DSLs)

Daniel J. Quinlan ¢ Lawrence Livermore National Laboratory (Lead PI)

Co-PIs and Institutions: Massachusetts Institute of Technology: Saman Amarasinghe, Armando Solar-Lezama, Adam
Chlipala, Srinivas Devadas, Una-May, O’Reilly, Nir Shavit, Youssef Marzouk; Rice University: John Mellor-Crummey &
Vivek Sarkar; IBM Watson: Vijay Saraswat & David Grove; Ohio State University: P. Sadayappan & Atanas Rountev;

University of California at Berkeley: Ras Bodik; University of Oregon: Craig Rasmussen; Lawrence Berkeley National
Laboratory: Phil Colella; University of California at San Diego: Scott Baden.

Problem

— Use of Domain Specific Languages supported by compilers and runtime
systems is the most promising method for scientists to harness the full
potential of next-generation Exascale supercomputers

Selected Solution Highlights

— The Sketch computer-aided programming system for refining high-level DSLs to
high performance code supports parallel programming and can generate
multiple variants of a program; each variant has potentially different
performance

— We developed the first general and reusable auto-tuning framework,
OpenTuner, that uses machine learning techniques to finding the best-
performing variant of a program automatically for complex and heterogeneous

R&EERT Selected Accomplishments

— We were able for the first time to automatically synthesize the details of a
distributed implementation of an irregular computational kernel and check it
for the absence of bugs

— The resulting implementation scales as well as a hand crafted implementation
at up to 2500 cores

— The Sketch generated version of Transpose from the FT NAS parallel benchmark
is faster than the standard hand-parallelized FORTRAN version

— OpenTuner currently includes 22 machine learning techniques that are selected
using a bandit meta technique, and thus is able to adopt to optimizing the
performance of any new problem

— OpenTuner is able to outperform vendor hand-optimized high performance
Linpack (HPL) benchmark after 150 iterations of learning

— OpenTuner and Sketch were released to the public and are now being used by
many projects to automatically find best implementations of a program

Execution Time (seconds)

250

200

150

100

50

Transpose Benchmark

""‘3““

Fofi=

(TR R E

1

MSL - -e- -
Fortran :--

-3

3~

256

512

1024

Processes

9.05 ' I Ven&or-op‘timize‘d

: OpenTuner - -&- - -
89511)
8.9 14 S
8.85 |- 80,
88 |
8.75
8.7
8.65 -

8.6 I I I I I I I I
0 200 400 600 800 1000 1200 1400 1600 1800

Autotuning Time (seconds)

T ororr-r-r-
P

L1111 1099990000e

H

Execution Time (seconds)

R, U.S. DEPARTMENT OF | Office of [Lavanes Liveqons ()
JENERGY science RRICE Z== i

September 2013

