
SLEEC: Semantics-rich Libraries
for Effective Exascale

Computation

X-Stack Kickoff Meeting
September 18, 2012

Wednesday, September 19, 12

X-Stack Kickoff Meeting	

 September 18, 2012

Team

■ Purdue University

■ Milind Kulkarni

■ Arun Prakash

■ Vijay Pai

■ Sam Midkiff

■ Sandia National Labs

■ Michael Parks

2
Wednesday, September 19, 12

X-Stack Kickoff Meeting	

 September 18, 2012

Motivation

■ Modern computational science applications composed of many
different libraries

■ Computational libraries, communication libraries, data
structure libraries, etc.

■ Peridigm, developed by co-PI Mike Parks, builds on 10
different Trilinos libraries

■ Each library has its own idioms and expected usage

■ Determining right way to compose and use libraries to solve a
problem is difficult

3
Wednesday, September 19, 12

X-Stack Kickoff Meeting	

 September 18, 2012

Motivation: Compositional complexity

■ Consider loosely-coupled multi-scale computational mechanics
problem (developed by co-PI Arun Prakash)

■ Must determine right way to decompose problem, couple
separate solutions, etc.

4
Wednesday, September 19, 12

X-Stack Kickoff Meeting	

 September 18, 2012

Motivation: Compositional complexity

■ Simple case: fixed number of
subdomains, only consider
how to couple them together

■ Vast space of configurations:
8 subdomains → 135K
possible schedules

■ Large variation in
performance of different
orders

■ Exploration of different
variants requires knowledge
of domain semantics, cost
estimates

5
Wednesday, September 19, 12

X-Stack Kickoff Meeting	

 September 18, 2012

Motivation: Difficult interaction between libraries

■ Peridigm: computational peridynamics code

■ Allows modeling of materials under
stress without explicit accounting for
discontinuities (fractures, etc.)

■ Built on Trilinos components

■ Set of computation and communication
libraries

■ Requires careful coordination of data
movement operations to manage shadow
data, etc. needed by solvers

■ But data movement requirements can
be directly inferred from which
equations are being solved

6

Before

After

Wednesday, September 19, 12

X-Stack Kickoff Meeting	

 September 18, 2012

Prior results

■ Exploiting library semantics to improve lock placement

7

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 4 8

Ti
m

e
(s

ec
s)

Threads

STM
Struct-Unaware

Struct-Aware

 0
 2
 4
 6
 8

 10
 12
 14
 16

 1 2 4 8

Ti
m

e
(s

ec
s)

Threads

STM
Struct-Unaware

Struct-Aware

(a) Genome (b) Vacation

Wednesday, September 19, 12

X-Stack Kickoff Meeting	

 September 18, 2012

Prior results

■ Exploiting library semantics to improve parallelism and locality

8

1 5 10 50 100 500
0

10
00

0
25

00
0

Computation Step (log−scale)
Av

ai
la

bl
e

Pa
ra

lle
lis

m

2209
123

kd−ml
kd−gk

(b) Available parallelism in agglomerative clustering
with and without exploiting

data structure semantics

1 2 3 4

of Cores

1

1.5

2

2.5

3

S
p
e
e
d
u
p

OVD

LCO

PAR

GAL

(a) Performance of mesh generation
with and without exploiting

locality semantics

Wednesday, September 19, 12

X-Stack Kickoff Meeting	

 September 18, 2012

Motivation: Why not compilers?

■ Compilers do not understand library calls as abstractions

■ Option one: see them as black boxes which give no
information → no opportunity for optimization

■ Option two: break abstraction boundaries and try to
optimize → many transformation opportunities are only
possible by understanding semantics of abstractions

■ Needed: a way for compilers to understand abstractions

■ Broadway project attempted this, but focused on analyzing
across abstractions, not semantics-driven transformations

9
Wednesday, September 19, 12

X-Stack Kickoff Meeting	

 September 18, 2012

Motivation: Why not domain-specific languages?

■ DSLs are a great fit for this

■ Bake abstractions into the language

■ Optimize code at high level of abstraction based on semantic
properties

■ Shown to be effective in various domains

■ SPL/Spiral for digital signal processing, Tensor contraction engine,
etc.

■ But they are not generalizable

■ New domain? New DSL!

■ What about applications that span domains? (e.g., multiphysics codes)

■ Needed: a generic infrastructure for incorporating domain knowledge

10
Wednesday, September 19, 12

X-Stack Kickoff Meeting	

 September 18, 2012

SLEEC: Principles

■ Abstractions carried by domain libraries

■ Domain experts encode semantics, not compiler writers

■ Need effective annotation language for capturing semantics

■ Compiler should be domain agnostic

■ Same infrastructure used for optimization and transformation
regardless of domain

■ Need common IR for capturing abstractions

■ Compiler should be able to optimize for various objectives

■ Do not want to focus solely on performance

■ Need generic optimization ability and cost models

11
Wednesday, September 19, 12

X-Stack Kickoff Meeting	

 September 18, 2012

SLEEC: Overview

12
Wednesday, September 19, 12

X-Stack Kickoff Meeting	

 September 18, 2012

SLEEC: Components

■ Annotation language for capturing semantic properties of
domain libraries

■ High-level intermediate representation to represent programs
that use annotated domain libraries

■ Transformation strategies that leverage annotations to perform
semantics-driven code transformations

■ Optimization heuristics that use domain-specific cost models to
find more efficient program variants

■ Iterative refinement techniques that let the compiler work with
incomplete information and infer missing information when
possible

13
Wednesday, September 19, 12

X-Stack Kickoff Meeting	

 September 18, 2012

Simple example

■ Consider annotated linear algebra library that supports two
methods

■ Matrix multiply

■ Equation solve

■ Operations have mathematical properties that establish
equivalence

■ Can solve ABx = b in two ways:

■ C = AB followed by Cx = b

■ Az = b followed by Bx = z

■ Latter may be more effective if A & B have special properties
(e.g., triangular)

14
Wednesday, September 19, 12

X-Stack Kickoff Meeting	

 September 18, 2012

Simple example

■ Program code

15

matmul(A, B, C);
...
solve(C, b, x);

Wednesday, September 19, 12

X-Stack Kickoff Meeting	

 September 18, 2012

Simple example: Abstract

■ Abstract into high level
representation

■ Expression tree to capture
flow of data

■ Library methods represented
as high level operations

■ Operands can be subtrees,
too, to support composition

16

matmul

A B

solve

A b

Wednesday, September 19, 12

X-Stack Kickoff Meeting	

 September 18, 2012

Simple example: Abstract

■ Abstract into high level
representation

■ Expression tree to capture
flow of data

■ Library methods represented
as high level operations

■ Operands can be subtrees,
too, to support composition

17

matmul

A B

solve

b

Wednesday, September 19, 12

X-Stack Kickoff Meeting	

 September 18, 2012

Simple example: Transform

■ Transformations expressed as
rewrite rules on expression
trees

■ Rewrites match operation
types (domain specific) but
compiler applies them
without understanding
domain semantics

18

matmul

A B

solve

b

Wednesday, September 19, 12

X-Stack Kickoff Meeting	

 September 18, 2012

Simple example: Transform

■ Transformations expressed as
rewrite rules on expression
trees

■ Rewrites match operation
types (domain specific) but
compiler applies them
without understanding
domain semantics

19

solve

B solve

A b

Wednesday, September 19, 12

X-Stack Kickoff Meeting	

 September 18, 2012

Simple example: Concretize

■ Re-materialize back to source
code, or transform to other,
lower-level IR

20

solve(A, b, z);
...
solve(B, z, x);

Wednesday, September 19, 12

X-Stack Kickoff Meeting	

 September 18, 2012

Annotation language

■ Domain libraries annotated by domain experts to interface with
compiler infrastructure

■ Questions

■ How to abstract libraries into IR

■ What kinds of transformations are legal

■ Represent as rewrite rules

■ How to verify? Can we synthesize?

■ How to concretize

■ Can this be inferred?

21
Wednesday, September 19, 12

X-Stack Kickoff Meeting	

 September 18, 2012

Annotation language: cost models

■ Most annotations deal with library interface

■ Semantic properties are associated with library specification,
not implementation

■ Can also provide cost estimates for library methods

■ Implementation and architecture specific

■ Can express other properties of implementation

■ Energy estimates

■ Accuracy information

22
Wednesday, September 19, 12

X-Stack Kickoff Meeting	

 September 18, 2012

Compiler infrastructure

■ Compiler does not explicitly understand domains

■ But is extensible, allowing IR to be extended as new domains
are added

■ Transformations are just pattern-matched rewrite rules

■ Can use domain-specific information such as domain-specific
equivalences, domain-specific properties

■ Can also substitute equivalent implementations of same
method

■ Generic compiler + annotated domain library = domain-specific
compiler

23
Wednesday, September 19, 12

X-Stack Kickoff Meeting	

 September 18, 2012

Compiler infrastructure: cost-driven optimization

■ Applying transformations to program generates semantically
equivalent program variants

■ No “best” variant: different implementations will work better in
different situations or optimize for different metrics

■ Compilation as optimization problem

■ Minimize objective function

■ FLOPs, energy efficiency, etc.

■ Subject to constraints

■ Semantically equivalent to original program, meets accuracy
constraints, etc.

■ Same infrastructure can be used to optimize for a variety of metrics

24
Wednesday, September 19, 12

X-Stack Kickoff Meeting	

 September 18, 2012

Iterative refinement

■ Typical problem with domain-specific languages or annotation
approaches: what if program is incompletely annotated?

■ Want compiler to still produce useful results

■ Key property: compilation process is about optimization, not
correctness

■ Lack of information does not raise correctness issues

■ As more annotations are provided, compilation results
improve

25
Wednesday, September 19, 12

X-Stack Kickoff Meeting	

 September 18, 2012

Iterative refinement: inference

■ Can we infer missing information?

■ Transformation annotations

■ Can we use synthesis techniques to infer legal
transformations?

■ Cost models

■ Can we use machine learning techniques to build cost models
automatically?

26
Wednesday, September 19, 12

X-Stack Kickoff Meeting	

 September 18, 2012

Potential impacts

■ Programmability: Programmers can focus on developing methods,
using high level libraries, without worrying about careful
optimization

■ Performance portability: Ability to select between library variants
automatically eases transition to new architectures

■ Scalability: Cost models can incorporate parallelism, locality,
communication to enhance scalability

■ Energy efficiency: Parameterized compilation can optimize for
energy use instead of performance without rewriting
infrastructure

■ Resilience: Cost models can incorporate resilience information
(e.g., algorithmic fault tolerance information), compilation can
choose variants based on resilience properties

27
Wednesday, September 19, 12

X-Stack Kickoff Meeting	

 September 18, 2012

Implementation plan

■ Work driven by “challenge” applications and domains

■ Computational mechanics and multiscale techniques (lead:
Arun Prakash)

■ Peridynamics and Trilinos libraries (lead: Michael Parks)

■ Build compiler infrastructure in ROSE

■ Compiler infrastructure and optimization strategies (leads:
Milind Kulkarni and Sam Midkiff)

■ Annotation language and IR (leads: Milind Kulkarni and Sam
Midkiff)

■ Cost models and performance modeling (lead: Vijay Pai)

28
Wednesday, September 19, 12

X-Stack Kickoff Meeting	

 September 18, 2012

Concrete deliverables

■ Annotation language

■ Common IR

■ Generic compiler infrastructure

■ “Showcase” annotated libraries

29
Wednesday, September 19, 12

X-Stack Kickoff Meeting	

 September 18, 2012

Conclusions

■ We want to work with you!

■ Finding and and annotating new domains

■ Verification and synthesis for transformations

■ Translating between different representations

■ Runtime targets/constraints for compilation

30

https://engineering.purdue.edu/~milind/sleec

https://engineering.purdue.edu/SLEEC

Wednesday, September 19, 12

https://engineering.purdue.edu/~milind/
https://engineering.purdue.edu/~milind/
https://engineering.purdue.edu/~milind/
https://engineering.purdue.edu/~milind/

