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What is Autotuning?

* Definition:
* Automatically generate a “search space” of possible implementations of a
computation

* A code variant represents a unique implementation of a computation,
among many

* A parameter represents a discrete set of values that govern code
generation or execution of a variant

* Measure execution time and compare

» Select the best-performing implementation (for exascale, tradeoff between
performance/energy/reliability)

* Key Issues:
* |dentifying the search space
* Pruning the search space to manage costs
e Off-line vs. on-line search
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X-TUNE Goals

A unified autotuning framework that seamlessly integrates
programmer-directed and compiler-directed autotuning.

* Expert programmer and compiler work collaboratively to tune a
code.

* Unlike previous systems that place the burden on either programmer or
compiler.

* Provides access to compiler optimizations, offering expert programmers
the control over optimization they so often desire.
* Design autotuning to be encapsulated in domain-specific tools
* Enables less-sophisticated users of the software to reap the benefit of
the expert programmers’ efforts.

* Focus on Geometric Multigrid (ExaCT, BoxLib, Chombo), Nekbone
(CESAR) and tensor contractions (NWCHEM)
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X-TUNE Vision
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X-TUNE Vision and Status Overlay

Overlay for joint funding, power/energy not part of X-TUNE, remainder in progress
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X-TUNE Approach at a Glance

* When available, start with manually-tuned code or work with
developer of new code

* What are the performance bottlenecks, inherent and on specific
architectures?

* What transformations are needed to target specific architectures?
* What performance questions can be addressed by autotuning?

* Attempt to automate

* Develop new transformations and required analysis and code
generation support

* Develop modeling and decision algorithms

 Collect application code from collaborators, Co-Design Centers and
other DOE application teams

* Generalize from experiments with manually-tuned code
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Outline

* Technical Approach
« Communication-Avoiding Geometric Multigrid (use case)

* OCTOPI: Tensor Computations and Tensor Contraction
(use case)

* Modeling and Decision Algorithms
 Summary of Interactions

* Remainder
 Comparison with state-of-the-art
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Geometric Multigrid

* Multigrid solves elliptic PDEs in O(N) computational complexity by using a
hierarchical approach.

smooth Lu" = f" smooth Lu" = f*
= ft - Lu" (residual) b 2k
o S estri ci(r?) u" += interpolate(u’")

smooth Lu®* = f*" smooth Lu?h = f*
rhe fh - Lu" 2h 4h
fin S restrict(r?) u’" += interpolate(u*")

smooth Lu*" = f* smooth Lu*" = f*
pAi = i _ [ g

o N restric {(rh) u*t += interpolate(u")

multiple smooth’s on Lub" = f3"
(or Iterative Solver like BiCGStab)

% As aresult, the degree of Parallelism decreases exponentially...
e N-way parallelism, N/8, N/64, ... 1-way parallelism across the entire machine ... N/64, N/8, N
e This is major worry for exascale machines 1000’s of cores per node

< Geometric Multigrid (GMG) is specialization in which the operator (A) is simply a stencil on a
structured grid (i.e. matrix-free)
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miniGMG Benchmark

miniGMG proxies the MG solves in BoxLib/Chombo codes
Cubical domain decomposed among processes into boxes.

Fine-grid box dimension is configurable. one subdomain

of 643 elements

e smaller boxes mimic AMR MG challenges
» fewer boxes per process can be used to

.’ |
Collection of d
subdomains
owned by an

MPI process

mimic combustion code constraints.

operator is configurable
» 7pt variable coefficient proxies LMC
* 7pt constant coefficient is simpler
» 27pt/13pt high-order stencils are available.

smoother in the v-cycle is configurable
* Gauss Seidel, Red-Black (“GSRB”) = proxies LMC
* Jacobi (mathematically weaker)

bottom solver is configurable
* multiple GSRB’s
* Krylov solver like BiCGStab, CG, CA-BiCGStab, CA-CG, etc...

USC
UNIVERsiTY Viterbi Argne f\ﬂ X"'TUNE 10

EEEEEEEEEEE

OF UTAH School of Engineering ~ Iagoratory



Compiler Optimization of miniGMG
(Smooth)

Optimization Using Known

Optimizations Built into CHILL

Transformations
* Loop skew, permute and tiling to * CHilLL = loop transformations
create a parallel wavefront and code generation

New Domain-Specific
Transformations

* Loop fusion in presence of
fusion-preventing dependences
* Eliminating temporaries

A 4 4 4

* Adding ghost zones (comm.
avoiding) to Multigrid operators
Codegen+
High-Performance OpenMP
L4 4

Code Generation

* Vary parallelism (intra-box) for Smooth Variants

different box sizes. USC )
UNIVERSITY Vitel’bi. Argne ﬁ\_‘m‘ X"'TUNE I@':'ﬁ

B L
OF UTAH School of Engineering amomaL A 95555}5!‘!:&?




Inter-Box Parallelism
Thread Configuration
<6,1>

Nested Parallelism
Thread Configuration

<2,3>
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Highlight — April 2014

Compiler Autotuning for Geometric Multigrid

Problem

Geometric multi-grid (GMG), is one of the most popular methods for solving partial differential
equations, but is very difficult to optimize on evolving CPU architectures

Solution
Leverage communication-avoiding optimizations which reduce communication overhead
Apply CHILL compiler technology, using a set of novel transformations to derive performance

comparable to hand-written optimizations

Make the approach portable, via autotuning system that explores tradeoffs between reduced

communication and increased computation, as well as tradeoffs in threading schemes
Recent results

Improved overall multi-grid solve execution by over 4x
on NERSC Edison vs. reference version

(Basu et al., HIPC 2013 & WOSC 2013)

Improved smooth at finest level by over 4x -
CHILL-generated code outperforms hand-tuned

Demonstrated comparable performance for low-level
OpenMP threads & higher level Habanero C phasers

IMPACT

Achieves comparable performance to hand-tuned code
without sacrificing programmer productivity

Demonstrates capability of compiler-directed
autotuning, with broad impact on important numerical
methods for the DOE Office of Science

Speedup

5.0x
4.5x
4.0x

3.5x 7
3.0x

2.5x
2.0x
1.5x

1.0x
0.5x

0.0x

B Hand-Optimized
OCHiLL

E Base Case

Hopper

MGSolve

Edison Hopper Edison

smooth() on 6473
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Recent Work: Compiler Optimization of
miniGMG (Smooth+Residual+Restrict)

e CHILL can tune and generate the best implementation for a given
combination of operator (7pt or 27pt) and smoother (Jacobi).

e Fusion may include smooth+residual+restriction

* Partial sums optimization reduces computation, exposes reuse in cache
and registers, improves SIMD code generation

* This choice of optimization, ghost zone depth, and threading
strategy is made for each box size at each level in a MG V-cycle.

v 4.5x @ +Wavefront(with PS) 4.0x B +Wavefront(with PS)

4.0x O0+Wavefront(no PS) O0+Wavefront(no PS)
B +Partial Sums B +Partial Sums

3.5x B +Fusion B +Fusion

3.0x B Baseline B Baseline

3.5x

3.0x
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t% 0.0x 8 0.5x
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Edison Hopper

Box Size for 27-point CC w/Jacobi on Edison



Tensor Products and Tensor Contractions

* Develop autotuning strategy for tensor
computations such as Nekbone (CESAR) and
NWCHEM (SciDAC)

e Express tensors in mathematical notation (borrowing
from Build-to-Order BLAS)

* Decision algorithm maps to CHilLL recipes
* Use Orio to explore autotuning search space

* Builds on prior work for small matrix-multiply
kernels in Nek5000

* Leverages and integrates existing tools
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Example: Spectral Element Method from
nek5000/nekbone (CESAR)

C = AQ®Bu
A and B are square matrices
* Uisacomponent vector
* In 2-d, C can be computed:

Ci,j = Z Z aj,lbi’kuk,l Order 0(“4)
I k

Optimize by rewriting to the following:
C = (ARQN(®B)u

Partial Results: W = (I@B)U =iy Wij = Zuu b
Order O(n3),

1
Can use
Final Results: C=ARNW =————eep Cjj = 2 a;xWg,j DGEMM
K
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Toward a High-Level Representation

* Prior work ignored tensor structure

subroutine local grad3(ur,us,ut,u,n,D,Dt)
C Output: ur,us,ut Input:u,n,D,Dt
real ur(0:n,0:n,0:n), us(0:n,0:n,0:n), ut(0:n,0:n,0:n)
real u(0:n,0:n,0:n), D(0O:n,0:n), Dt(0:n,0:n)
integer e,1il,3jl

ml = n+1
m2 = ml*ml

call mxm(D,ml,u,ml,ur,m2)
do k=0,n
call mxm(u(0,0,k),ml,Dt,ml,us(0,0,k),ml)
enddo
call mxm(u,m2,Dt,ml,ut,ml)

return
end
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Goal

subroutine local grad3(ur,us,ut,u,n,D)
C Output: ur,us,ut Input:u,n,D
real ur(0:n,0:n,0:n),us(0:n,0:n,0:n),ut(0:n,0:n,0:n)
real u(0:n,0:n,0:n), D(0:n,0:n)

UR;j5x = DiUpgx
Usijk = D;iUsx
UT 5k = DiUipn
return

end
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Experimental Framework

OCTOPI

High Level ' Decision
representation _Algorithm

'-——

[ CUDA, CUDA-CHILL

[ Choose
'> T (;ode €-~= one
~ Transformation .
User Input | g recipe
¢ ________ J
CUDACode --------
v
Best
Optimized < Finish?)- - ==-=-=======
code
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Preliminary Results

Speedup versus Sequential
Experimental Setup:

12

9.94 CPU: Intel i7 with 2.8 GHz

RAM: 4 GB

GPU: NVIDIA TESLA C2050 (FERMI)

OS: LINUX Mint 13 64 bits

COMPILER: PGI 14.3 with OpenACC support
CUDA: Version 5.5

10

Speedup (X)

B Sequential

B OpenMP (4-Threads)
i OpenACC

i OpenACC-Tuned

Nekbone NWCHEM

Benchmark H Autotuned

e Speedup on GPU: 1.95x Nekbone and 9.94x NWCHEM
* Speedup over OMP: 1.01x Nekbone and 1.95x NWCHEM
e Speedup tuning OpenACC: 2.45x Nekbone and 13.68x NWCHEM
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Model-Guided Compiler Decision Algorithms

* Goal: Automate the generation of code
variants by compiler decision algorithms

* Models and analysis derive information about
application
» data dependences, data reuse, instruction counts,
performance bounds
e Application and architecture information
guide decisions

* transformations, data placement
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- ——— -
N

Modeling and Compiler Decision Algorithm

PBound analyzes code to Decision Algorithm CHILL performs

derive reuse distance, and data examines dependences transformations and code
footprint, integration with and data reuse to generation as specified by
roofline generate a set of CHILL parameterized recipes

transformation recipes

_

~

Input
Interface
aoelaly|

IndinQ

L

_____________________________________

Maps PBound data structures
to Decision Algorithm queries

______________________________________

Maps output from Decision
Algorithm to CHiILL
transformation recipes

e e e e e e e e e e e = e e e e e e e e e e e e e e e e e e e

——— e ———
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Modeling and Decision Algorithm Status

* A new data reuse algorithm with more precise
identification of reuse types added to PBound.

* A new locality decision algorithm was implemented
and integrated with PBound

* A new algorithm targeting GPUs was developed and
integrated with PBound

* NWCHEM

* locality algorithm generates scripts that are used by
CHilLL to generate code variants
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Interaction with X-Stack and Co-Design
Projects

e Sam Williams - ExaCT and DEGAS
e Brian van Straalen — D-TEC
e Paul Hovland — CESAR

* Also interfacing with other X-Stack software
* Orio/Active Harmony and OpenTuner planned

e Habanero C
e ROSE

* Additional code excerpts
e TiDA (LBNL), S3D (LANL), HPGMG (LBNL)
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Raising Run-Time Level of Abstraction with
Habanero C for miniGMG

#pragma omp forall ... (inter-box parallel loop)

for (k = -3; k <= 66; k++) {
for (t = 0; t <= min(3,intFloor(t+3,2)); t++) {
for (j = t-3; j <= -t+66; j++) {
for (i=t-3+intMod(-k-color-j-(t-3),2); i<=-t+66; i+=2) {
SO(t,k-t,j,i); /* Laplacian */
S1(t,k-t,j,i); /* Helhmoltz */
S2(t,k-t,j,i); /* GSRB  */}}} Naive (Inter-Box)

} Threading

#pragma omp forall ... (inter-box parallel loop)

#pragma omp parallel private (...) num_threads(y)
{
#pragma omp single
initPhasers();
tid=omp_get_thread_num();
for (k = -3; k <= 66; k++) {

for (t = 0; t <= min(3,intFloor(t+3,2)); t++) {

for (j = 6*tid-3; j <= min(6*tid+2,66); j++) {

for (i= t-3+intMod(-k-color-j-(t-3),2); i<=-t+66; i+=2) {

doNext(omp_get_thread_num());
B Habanero

Phasers

THE

UNIVERsITY Viterbi
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#pragma omp forall ... (inter-box parallel loop)

#pragma omp parallel private (...) num_threads(y)
{
tid=omp_get_thread_num();
for (k = -3; k <= 66; k++) {
for (t = 0; t <= min(3,intFloor(t+3,2)); t++) {
for (j = 6*tid-3; j <= min(6*tid+2,66); j++) {
for (i= t-3+intMod(-k-color-j-(t-3),2); i<=-t+66; i+=2) {
SO(t,k-t,j,i); S1(t,k-t,j,i); S2(t,k-t,j,i); }}}
zplanes([tid] = t2;
if (left != tid) {while(zplanes[left] < t2)

{ _mm_pause();}} else{}
if (right != tid) {while(zplanes[right] < t2)
{_mm_pause();}} else{}}}

OMP

Spin-locks

Speedup over Naive Inter-Box Threading |

B Phasers
B OMP + Spin Locks
B Naive Threading

0.9 0.95 1 1.05 1.1

1.15

1.2

USC & =

Edison Phase(ll), 12 cores per chip, 2 chips per node

Increasing number of threads inside a box
Widens gap between OMP Barrier and spin locks

21 XTUNE
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Connection to State-of-the-Art
(MPI+OpenMP)

* MiniGMG uses MPI for domain decomposition and
OpenMP for thread parallelism

 X-TUNE is agnostic about code outside its purview
but introduces thread-level parallelism
* Goal is to find right abstraction for compiler
 Compatible with a variety of run-time systems

e Autotuning and communication-avoiding
optimizations complementary to run-time and
communication support
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