
Why DSLs Are Desirable

• There is a fundamental tension between code 
maintainability, portability and performance

• Heterogeneity in hardware architecture 
exacerbates the problem
– Nearly impossible to write code that is portable across 

platforms in current high level languages that also 
performs well everywhere

– The only option is code transformation to retain 
portability

• Urgent need for abstraction in programming 
model between high-level math and currently 
available languages



Why Are Embedded DSLs Attractive to 

Applications
• Often scientists inadvertently write code with optimization 

blockers
– Typical scientist coders not conversant with constraints of the 

compiler optimization
• Compiler optimizations are by definition conservative: when in doubt don’t 

optimize

– Richer constructs help translation of algorithm into code without 
optimization blockers

– if you make the problem easier for the compiler, you have a fighting 
chance to get good code.

• Boutique solutions do not translate into production grade 
software
– Scientists are reluctant to add dependencies which have difficulty 

getting on new platforms

• Applications won’t use a language unless its longevity is 
guaranteed
– Enhancements embedded within an existing language make longevity 

more likely



Interpolation from 
overlaying coarse cells

Applying a two-level AMR Operator

- Apply operator on the coarse 
grids 
- Save fluxes at coarse-fine 

boundaries 
- Fill ghost cells on the fine grids 
- Apply operator on fine grids
- Increment fluxes at coarse-fine 

boundaries
- Apply flux correction at fine-

coarse boundaries

Average from fine cells

Reconcile fluxes



Basis for an EDSL - AMR Shift Calculus
• A stencil operator is a sum of shifts multiplied by 

corresponding coefficients
– Offset specified by the shift relative to the target

• No explicit ijk indexing (dimension independent code)

– Shifts don’t say where they are applied

– The coefficients could be scalars or tensors

– + and * operators for adding and composing stencils

• Applying the stencil operator 
– Weighted sum of some points on the mesh 

– Support nested hierarchies (example in Dan’s talk)

• Stencils are known at compile time, where to apply them is 
specified at run time

– Provides rich set of opportunities for compiler optimizations provided there is 
suitable runtime support

Level Shift Shifts between Levels



Conclusions

• The code is written in higher level semantics –more 
opportunities for optimization
– Functional dependencies articulated through composition of 

stencils
• Possible to fuse procedures knowing the stencil composition

– Spatial component expressed through the source and destination 
points

• Possible to do custom decomposition/coalition of space depending upon 
the target architecture

• Also possible to do over-decomposition to exploit pipelining potential 
through runtime management

• Having an embedded DSL useful
– A very small API for compilers/code translation tools to work with

– Flexibility of high level language for the complex logic of 
composition

• Also for parts of the algorithm that do not map to shift calculus



Extra slides



Operations defined on Stencils

• (S1+S2) =>union(S1,S2); coefficients of common 
shifts get added

• S1=<1,0|C1>,<0,0|C2>, S2=<0,0|C3>,<0,-1|C4> 

• S1+S2= <1,0|C1>,<0,0|C2+C3>,<0,-1|C4>

– Defined for Level S1 and S2

• (S1*S2) =>convolve(S1,S2); Shifts get added, 
coefficients get multiplied

• S1=<1,0|C1>,<0,0|C2>, S2=<0,0|C3>,<0,-1|C4> 

• S1*S2=<1,0|C1*C3>, <1,-1|C1*C4>,<0,0|C2*C3>,<0,-
1|C2*C4> 

– Defined when
• S1 and S2 of the same type (Level, CtoF or FtoC)

• One of S1 and S2 is Level and the other is a half shift  or 
multilevel shift


