
Mary Hall, PI, University of Utah
Paul Hovland, Stefan Wild, Krishna Narayanan, Jeff

Hammond (ANL)
Lenny Oliker, Sam Williams, Brian van Straalen (LBNL)

Jacqueline Chame (USC/ISI)

X-TUNE
Autotuning for Exascale:

Self-Tuning Software to Manage
Heterogeneity

Website:
http://ctop.cs.utah.edu/x-tune/

Thanks to exascale reports and workshops!
•  Multiresolution programming systems for different users

–  Joe/Stephanie/Doug [Pingali, UT]
–  Elvis/Mort/Einstein [Intel]

•  Specialization simplifies and improves efficiency
–  Target specific user needs with domain-specific languages/libraries
–  Customize libraries for application needs and execution context

•  Interface to programmers and runtime/hardware
–  Seamless integration of compiler with programmer guidance and

dynamic feedback from runtime
•  Toolkits rather than monolithic systems

–  Layers support different user capability, collaborative ecosystem
•  Virtualization (over-decomposition)

–  Hierarchical, or flat but construct hierarchy when applicable?

 2

Exascale Software: A View in 2012

•  Definition:
–  Automatically generate a “search space” of possible

implementations of a computation
•  A code variant represents a unique implementation of a

computation, among many
•  A parameter represents a discrete set of values that govern

code generation or execution of a variant
–  Measure execution time and compare
–  Select the best-performing implementation (for exascale, tradeoff

between performance/energy/reliability)

•  Key Issues:
–  Identifying the search space
–  Pruning the search space to manage costs
–  Off-line vs. on-line search

What is Autotuning?

 3

a.  Autotuning libraries
–  Library that encapsulates knowledge of its performance under

different execution environments
–  Dense linear algebra: ATLAS, PhiPAC
–  Sparse linear algebra: OSKI
–  Signal processing: SPIRAL, FFTW

b.  Application-specific autotuning
–  Active Harmony provides parallel rank order search for tunable

parameters and variants
–  Sequoia and PetaBricks provide language mechanism for

expressing tunable parameters and variants
c.  Compiler-based autotuning

–  Other examples: Saday et al., Swany et al., Eignenmann et al.
–  Related concepts: iterative compilation, learning-based compilation

Three Types of Autotuning Systems

 4

X
-T

U
N

E

A unified autotuning framework that seamlessly integrates
programmer-directed and compiler-directed autotuning,
•  Expert programmer and compiler work collaboratively to

tune a code.
–  Unlike previous systems that place the burden on either

programmer or compiler.
–  Provides access to compiler optimizations, offering expert

programmers the control over optimization they so often desire.
•  Design autotuning to be encapsulated in domain-specific

tools
–  Enables less-sophisticated users of the software to reap the

benefit of the expert programmers’ efforts.
•  Focus on Adaptive Mesh Refinement Multigrid (Combustion

Co-Design Center,BoxLib,Chombo) and tensor contractions
(TCE)

 5

X-TUNE Goals

 6

X-TUNE Structure

Pbound,
Roofline

CHiLL,
CUDA-CHiLL

Algorithm,
Tuning Expertise

Existing software all
implemented using
ROSE AST.

 7

Autotuning Language Extensions

•  Tunable Variables
–  An annotation on the type of a variable (as in Sequoia)
–  Additionally, specify range, constraints and a default

value
•  Computation Variants

–  An annotation on the type of a function (as in
PetaBricks)

–  Additionally, specify (partial) selection criteria
–  Multiple variants may be composed in the same

execution
Separate mapping description captures architecture-
specific aspects of autotuning.

•  Foundational Concepts
–  Identify search space through a high-level description

that captures a large space of possible implementations
–  Prune space through compiler domain knowledge and

architecture features
–  Provide access to programmers with transformation

recipes, or recipes generated automatically by compiler
decision algorithm

–  Uses source-to-source transformation for portability,
and to leverage vendor code generation

–  Requires restructuring of the compiler

Compiler-Based Autotuning

 8

CHiLL Implementation

CHiLL
Driver and

Transformation
Algorithms

Omega+
Solves Constraints

and Represents
Integer Sets

Codegen+
Generates Loop Code

by Scanning
Polytopes

Compiler Internal Representation, Abstract Syntax Tree

CUDA-CHiLL
cudaize.lua
cudaize.py

a in shared memory, both a and b are
read through texture memory

Different computation decomposition
leads to additional tile command

Nvidia TC2050 Fermi
implementation
Mostly corresponds to CUBLAS
3.2 and MAGMA

Nvidia GTX-280 implementation
Mostly corresponds to CUBLAS
2.x and Volkov’s SC08 paper

Transformation Recipes for Autotuning:
Incorporate the Best Ideas from Manual Tuning

10

•  Performance
comparison with
CUBLAS 3.2

Compiler + Autotuning can yield comparable and even
better performance than manually-tuned libraries

 11

Matrix-Matrix Multiply (dgemm)

Matrix-Vector Multiply (sgemv)

“Autotuning, Code Generation and Optimizing Compiler Technology For GPUs,” M.
Khan, PhD Dissertation, University of Southern California, May 2012.

•  Performance modeling increases the
automation in autotuning
–  Manual transformation recipe generation is

tedious and error-prone
–  Implicit models are not portable across

platforms

Pbound: Performance Modeling for Autotuning

•  Models can unify programmer guidance and compiler
analysis
–  Programmer can invoke integrated models to guide autotuning from

application code
–  Compiler can invoke models during decision algorithms

•  Models optimize autotuning search
–  Identify starting points
–  Prune search space to focus on most promising solutions
–  Provide feedback from updates in response to code modifications

 12

+

Reuse distance
•  For regular (affine) array

references
–  Compute reuse distance, to

predict data footprints in
memory hierarchy.

–  Guides transformation and
data placement decisions.

Pbound: Reuse Distance and Cache Miss Prediction

void foo() {	
 int i, j, k, n;	
 double y[10], x[10]; 	
 double z[10], a[10], b[10];	
 for (i = 0; i < 10; i++) 	
 x[i] = a[i] + b[i] ;	
 for (j = 0; j < 5; j++) 	
 y[j] = x[j]+ b[j] ;	
 for (k = 0; k < 10; k++) 	
 x[k] = y[k] ;	
 return;	
}	

Cache miss prediction
•  Use to predict misses
•  Assuming fully associative cache

with n lines (optimistic case), a
reference will hit if the reuse
distance d<n.

Reuse Distance
O

cc
ur

re
nc

es
 Reuse Distance Histogram

1 2 3 4 5 6 7 8 9 10 11 12

 13

 14

#include "pbound_list.h”
void axpy4(int n, double *y, double a1, double *x1, double a2,
double *x2, double a3, double *x3, double a4, double *x4){
#ifdef pbound_log
pboundLogInsert("axpy.c@6@5",8,0,40 * ((n - 1) + 1) + 32,
 8 * ((n - 1) + 1),3 * ((n - 1) + 1) + 1,4 * ((n - 1) + 1));
 #endif
}

void axpy4(int n, double *y, double a1, double *x1, double a2,
 double *x2, double a3, double *x3, double a4, double *x4) {
 register int i;
 for (i=0; i<=n-1; i++)
 y[i]=y[i]+a1*x1[i]+a2*x2[i]+a3*x3[i]+a4*x4[i];
}

Pbound: Application signatures+architecture

•  Single-core and multicore models for application
performance will combine architectural information,
user-guidance, and application analysis

•  Models will be coupled with decision algorithms to
automatically generate CHiLL transformation
recipes
–  Input: Reuse Information, Loop Information etc.
–  Output: Set of transformation scripts to be used

by empirical search
•  Feedback to be used to refine model parameters

and behavior
•  Small and large application execution times will be

considered

How will modeling be used?

 15

•  Stencil performance bound, when bandwidth limited:
 Performance (gflops) <=
 stencil flops * STREAM bandwidth / grid size

•  Multigrid solves Au=f by calculating a number of corrections to
an initial solution at varying grid coarsenings (“V-cycle”)
–  Each level in the v-cycle: perform 1-4 relaxes (~stencil sweeps).
–  Repeat multiple v-cycles reducing the norm of the residual by an order of

magnitude each cycle.

Example: Stencils and Multigrid

Solve

Restrict Interpolate

 16

•  Some regions of the domain may require finer
fidelity than others.

•  In Adaptive Mesh Refinement, we refine
those regions to a higher resolution in time
and space.

•  Typically, one performs a multigrid “level
solve” for one level (green, blue, red) at a
time.

•  Coarse-fine boundaries (neighboring points
can be at different resolutions) complicate
the calculation of the RHS and ghost zones
for the level.

•  Each level is a collection of small (323 or
643) boxes to minimize unnecessary work.

•  These boxes will be distributed across the
machine for load balancing (neighbors are not
obvious/implicit)

Multigrid and Adaptive Mesh Refinement

 17

•  Focus is addressing data movement, multifaceted:
–  Automate fusion of stencils within an operator. Doing

so may entail aggregation of communication (deeper
ghost zones)

–  Extend and automate the communication-avoiding
techniques developed in CACHE.

–  Automate application of data movement-friendly
coarse-fine boundary conditions.

–  Automate hierarchical parallelism within a node to AMR
MG codes.

–  Explore alternate data structures
–  Explore alternate stencil algorithms (higher order, …)

•  Proxy architectures: MIC, BG/Q, GPUs
•  Encapsulate into an embedded DSL approach

Autotuning for AMR Multigrid

 18

•  Build integrated end-to-end autotuning, focused on AMR
multigrid and tensor contractions
–  Language and compiler guidance of autotuning
–  Programmer and compiler collaborate to tune a code
–  Modeling assists programmer, compiler writer, and search space

pruning.
•  Leverage and integrate with other X-Stack teams

–  Our compiler technology all based on ROSE so can leverage from
and provide capability to ROSE.

–  Domain-specific technology to facilitate encapsulating our
autotuning strategies.

–  Collaborate with MIT on autotuning interface
–  Common run-time for a variety of platforms (e.g., GPUs and MIC),

and supports a large number of potentially hierarchical threads.

 19

Summary and Leverage

