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Exascale Software: A View in 2012

Thanks to exascale reports and workshops

Multiresolution programming systems for different users
- Joe/Stephanie/Doug [Pingali, UT]

- Elvis/Mort/Einstein [Intel]

Specialization simplifies and improves efficiency

- Target specific user needs with domain-specific languages/libraries
- Customize libraries for application needs and execution context

Interface to programmers and runtime/hardware

- Seamless integration of compiler with programmer guidance and
dynamic feedback from runtime

Toolkits rather than monolithic systems
- Layers support different user capability, collaborative ecosystem

Virtualization (over-decomposition)
- Hierarchical, or flat but construct hierarchy when applicable?
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What is Autotuning?
+ Definition:
- Automatically generate a "search space” of possible

implementations of a computation

- A code variant represents a unique implementation of a
computation, among many

- A parameter represents a discrete set of values that govern
code generation or execution of a variant

- Measure execution time and compare

- Select the best-performing implementation (for exascale, tradeoff
between performance/energy/reliability)

* Key Issues:
- Identifying the search space
- Pruning the search space to manage costs
- Off-line vs. on-line search
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X-TUNE

Three Types of Autotuning Systems

a. Autotuning libraries

- Library that encapsulates knowledge of its performance under
different execution environments

- Dense linear algebra: ATLAS, PhiPAC
- Sparse linear algebra: OSKI
- Signal processing: SPIRAL, FFTW

b. Application-specific autotuning

- Active Harmony provides parallel rank order search for tunable
parameters and variants

- Sequoia and PetaBricks provide language mechanism for
expressing tunable parameters and variants
c. Compiler-based autotuning
- Other examples: Saday et al., Swany et al., Eignenmann et al.
- Related concepts: iterative compilation, learning-based compilation
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X-TUNE Goals

A unified autotuning framework that seamlessly integrates
programmer-directed and compiler-directed autotuning,

+ Expert programmer and compiler work collaboratively to
tune a code.

- Unlike previous systems that place the burden on either
programmer or compiler.

- Provides access to compiler optimizations, of fering expert
programmers the control over optimization they so often desire.

- Desigh autotuning to be encapsulated in domain-specific
tools

- Enables less-sophisticated users of the software to reap the
benefit of the expert programmers’ efforts.
* Focus on Adaptive Mesh Refinement Multigrid (Combustion
Co-Design Center,BoxLib,Chombo) and tensor contractions
_ (TCE)
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X-TUNE Structure
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Autotuning Language Extensions

+ Tunable Variables
- An annotation on the type of a variable (as in Sequoia)

- Additionally, specify range, constraints and a default
value

+ Computation Variants

- An annotation on the type of a function (as in
PetaBricks)

- Additionally, specify (partial) selection criteria

- Multiple variants may be composed in the same
execution

Separate mapping description captures architecture-
specific aspects of autotuning.
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Compiler-Based Autotuning

Foundational Concepts

- Identify search space through a high-level description
that captures a large space of possible implementations

- Prune space through compiler domain knowledge and
architecture features

- Provide access to programmers with transformation
recipes, or recipes generated automatically by compiler
decision algorithm

- Uses source-to-source transformation for portability,
and to leverage vendor code generation

- Requires restructuring of the compiler
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CHiLL Implementation

CUDA-CHiLL CHILL

cudaize.lua
cudaize.py

Driver and
Transformation
Algorithms

Omega+ Codegen+
Solves Constraints Generates Loop Code
and Represents by Scanning
Integer Sets Polytopes

Compiler Internal Representation, Abstract Syntax Tree
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Transformation Recipes for Autotuning:
JIncorporate the Best Ideas from Manugl Tuning

1 tile_by_index({"i","j"}.{T1.T)}.{I1_control="ii".I12_control="jj"},

. ° o ° niiu'ujju,niu'ujn})
NV'd'q GTX - 280 'mplemen*atlon 2 tile_by_indGX({"‘S"},'{TK},{I].._C(')ntr0|=" kku},
Mosfly Corresponds to CUBLAS . - {n-"u'n”u'nkkn'lllll'nln'llkll}.stnded.)
. 3 tile_by_index({"i"}.{T)}.{|1_control="tt",|1_tile="t"},
2 .x and v0|kov s SCOS paper‘ "ii","jj","kk","t",“tt","j","k"})

4 cudaize("mm_GPU",{a=N*N,b=N*N,c=N*N},
{block={"ii","jj"}.thread={"t","tt"}})

5 copy_to_shared("tx","b",-16)

6 copy_to_registers("kk","c")

7 copy_to_texture("b")

8 unroll_to_depth(2)

. ~

(1 tile_by_index({"i","j"}.{T1.TJ}.{|1_control="ii",|2_control="jj"}, ) NVidia TC205O Fef‘mi
Lyt ) . .
2 tile_by_index({"k"}.{TK}.{|1_control="kk"}, Imp'emen"'a'“on
i, i, kke, i, e, k" }  strided)
3 tile_by_index({"i"}.{TK}.{|1_control="t"|1_tile="tt"}, MOS‘HY COI"I"eSpondS 1'0 CUBLAS
HPATPA RO RS
4 tile_by_index({"j"}.{TK}.{l1_control="s",11_tile="ss"}, 3.2 and MAGMA

{llii!l,lljjll'IIkkll'llttll'lltll'llssll'llsll'llkll})
cudaize("mm_GPU",{a=N*N,b=N*N,c=N*N},
{block={"ii","jj"}.thread={"tt","ss"} })

copy_to_shared("tx","b",-16) g = arp
t e e Different computation decomposition

copy_to_shared("tx","a".-16) leads to additional tile command

copy_to_texture("a")

10 copy_to_registers("kk","c") .
11 unroll_to_depth(2) J a in shared memory, both a and b are

read through texture memory
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Compiler + Autotuning can yield comparable and even
better performance than manually-tuned libraries

Matrix-Matrix Multiply (dgemm)

350
300 . 4 + + . +  —
S— e e 2= =t & -
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‘£ 200; :hcnsgxéﬁrfi?fgzoso
g 150 :gbjg;{\:ﬁﬁ?&zso
L 400 +CUBLAS-GTX-280
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& F & F & & F£ F L& & Matrix-Vector Multiply (sgemv)
Problem Sizes ( Sq. matrices) ::
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* Performance o
comparison with i
CUBLAS 3.2 5 —CUBLAS
0 — CUDA-CHiLL

SRS g g S i R Ot g g G I A P g
“Autotuning, Code Generation and Optimizing Compiler Technology For GPUs,” Mitoblemsizes (sq sarrices)
Khan, PhD Dissertation, University of Southern California, May 2012.
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Pbound: Performance Modeling for Autotuning

12

Performance modeling increases the
automation in autotuning

- Manual transformation recipe generation is
tedious and error-prone

- Implicit models are not portable across
platforms

Models can unify programmer guidance and compiler
analysis
- Programmer can invoke integrated models to guide autotuning from
application code

- Compiler can invoke models during decision algorithms
Models optimize autotuning search
- Identify starting points

- Prune search space to focus on most promising solutions
- Provide feedback from updates in response to code modifications
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Pbound: Reuse Distance and Cache Miss Prediction

Reuse distance Cache miss prediction

* For regular (affine) array * Use tfo predict misses
references + Assuming fully associative cache
- Compute reuse distance, o with n lines (optimistic case), a

predict data footprints in reference will hit if the reuse
memory hierarchy. distance d<n.

- Guides transformation and

data placement decisions. Reuse Distance Histogram

void foo() {
int i, j, k, n;
double y[10], x[10];
double z[10], a[10Q], b[10];
for (i = 0; 1 < 10; i++)

Occurrences

x[i] = a[i] + b[i] ;
for (j =0; j <5; j++t) '

y[j1 = x[31+ bLJ1 so->21, vre->4 x[i] = afi] + bLi] ;
for (k = 0; k < 10; k++) N J

x[k] = y[k] ;
return; 1 2 3 45 67 8 9 10 11 12

} ’ x[@->4], y[0->4] y[3] = x[3] + b[4] ; x[5->9] .
< - ’ Reuse Distance
| x[K] = yK] ;
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Pbound: Application signatures+architecture

void axpy4(int n, double *y, double al, double *x1, double a2,
double *x2, double a3, double *x3, double a4, double *x4) {
register int i;
for (i=0; i<=n-1; i++)
yli]=yli]+al*x1[i]+a2*x2[i]+a3*x3[i]+ad*x4[i];

Counting Operations (1/2)
AssStmt

| |5 LOADs, 1 STORE, 8FLOPs |

/®\
@
o ‘ < LOAD
) @9 @'
P02 gH®P

#include "pbound_list.h”

void axpy4(int n, double *y, double al, double *x1, double a2,

double *x2, double a3, double *x3, double a4, double *x4){

#ifdef pbound_log

pboundLoglnsert("axpy.c@w6@5",8,0,40 * (n-1) +1) + 32,
8*((n-D+1D3*((n-1)+1)+1,4* ((n-1)+1));

#endif

}
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How will modeling be used?

+ Single-core and multicore models for a'aplica’rion.
performance will combine architectural information,
user-guidance, and application analysis

* Models will be coupled with decision algorithms to
automatically generate CHiLL transformation
recipes

- Input: Reuse Information, Loop Information etc.

- Output: Set of transformation scripts to be used
by empirical search

Feedback to be used to refine model parameters
and behavior

+ Small and large application execution times will be
considered
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Example: Stencils and Multigrid

- Stencil performance bound, when bandwidth limited:

Performance (gflops) <=
stencil flops * STREAM bandwidth / grid size
Multigrid solves Au=f by calculating a number of corrections to
an initial solution at varying grid coarsenings ("V-cycle")

- Each level in the v-cycle: perform 1-4 relaxes (~stencil sweeps).
Repeat multiple v-cycles reducing the norm of the residual by an order of

maghitude each cycle.

.{?SRB on Lu" = ft GSRB on Lu" = f"

— - Luh (resi
frzh h_g:estl;zl'lct(( :he)SIdual) u" = interpolate(u")
GSRB on Lu?h = f! GSRB on Lu?" = f*h

r?h= fh _ Ly .

i ;‘{; trict(r") u?" = interpolate(u*")

Restrict GSRB on Lut = f# GSRB on Lu't = fit Interpo|a1'e
pl= i _ [ gyn
u*t = interpolate(u®")

ald ;-restrict( )
multiple GSRB’s on Lu’" = f8"
(or Iterative Solver)
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Multigrid and Adaptive Mesh Refinement

Some regions of the domain may require finer
fidelity Than others.

In Adaptive Mesh Refinement, we refine
those regions to a higher resolution in fime

and space.

Typically, one performs a multigrid "level

solve"” for one level (green, blue, red) at a

time.

Coarse-fine boundaries (heighboring points
can be at different resolutions) complicate

the calculation of the RHS and ghost zones

for the level.

Each level is a collection of small (323 or

643) boxes to minimize unnecessary work.
These boxes will be distributed across the
machine for load balancing (neighbors are not
obvious/implicit)
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Autotuning for AMR Multigrid

» Focus is addressing data movement, multifaceted:

« Pr

Automate fusion of stencils within an operator. Doing
so may entail aggregation of communication (deeper
ghost zones)

Extend and automate the communication-avoiding
techniques developed in CACHE.

Automate application of data movement-friendly
coarse-fine boundary conditions.

Automate hierarchical parallelism within a node to AMR
MG codes.

Explore alternate data structures
Explore alternate stencil algorithms (higher order, ...)

oxy architectures: MIC, BG/Q, GPUs

» Encapsulate into an embedded DSL approach
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Summary and Leverage

Build integrated end-to-end autotuning, focused on AMR
multigrid and tensor contractions

- Language and compiler guidance of autotuning
- Programmer and compiler collaborate to tune a code
- Modeling assists programmer, compiler writer, and search space
pruning.
+ Leverage and integrate with other X-Stack teams

- Our compiler technology all based on ROSE so can leverage from
and provide capability to ROSE.

- Domain-specific technology to facilitate encapsulating our
autotuning strategies.

- Collaborate with MIT on autotuning interface
- Common run-time for a variety of platforms (e.g., GPUs and MIC),

and supports a large number of potentially hierarchical threads.
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