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Thanks to exascale reports and workshops!
•  Multiresolution programming systems for different users 

–  Joe/Stephanie/Doug [Pingali, UT] 
–  Elvis/Mort/Einstein [Intel] 

•  Specialization simplifies and improves efficiency 
–  Target specific user needs with domain-specific languages/libraries 
–  Customize libraries for application needs and execution context 

•  Interface to programmers and runtime/hardware 
–  Seamless integration of compiler with programmer guidance and 

dynamic feedback from runtime 
•  Toolkits rather than monolithic systems 

–  Layers support different user capability, collaborative ecosystem 
•  Virtualization (over-decomposition) 

–  Hierarchical, or flat but construct hierarchy when applicable? 
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Exascale Software: A View in 2012 



•  Definition:  
–  Automatically generate a “search space” of possible 

implementations of a computation 
•  A code variant represents a unique implementation of a 

computation, among many  
•  A parameter represents a discrete set of values that govern 

code generation or execution of a variant 
–  Measure execution time and compare 
–  Select the best-performing implementation (for exascale, tradeoff 

between performance/energy/reliability) 

•  Key Issues: 
–  Identifying the search space 
–  Pruning the search space to manage costs 
–  Off-line vs. on-line search 

What is Autotuning? 
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a.  Autotuning libraries 
–  Library that encapsulates knowledge of its performance under 

different execution environments 
–  Dense linear algebra: ATLAS, PhiPAC 
–  Sparse linear algebra: OSKI 
–  Signal processing: SPIRAL, FFTW  

b.  Application-specific autotuning 
–  Active Harmony provides parallel rank order search for tunable 

parameters and variants 
–  Sequoia and PetaBricks provide language mechanism for 

expressing tunable parameters and variants 
c.  Compiler-based autotuning 

–  Other examples: Saday et al., Swany et al., Eignenmann et al. 
–  Related concepts: iterative compilation, learning-based compilation  

Three Types of Autotuning Systems 
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A unified autotuning framework that seamlessly integrates 
programmer-directed and compiler-directed autotuning,  
•  Expert programmer and compiler work collaboratively to 

tune a code. 
–  Unlike previous systems that place the burden on either 

programmer or compiler. 
–  Provides access to compiler optimizations, offering expert 

programmers the control over optimization they so often desire. 
•  Design autotuning to be encapsulated in domain-specific 

tools  
–  Enables less-sophisticated users of the software to reap the 

benefit of the expert programmers’ efforts. 
•  Focus on Adaptive Mesh Refinement Multigrid (Combustion 

Co-Design Center,BoxLib,Chombo) and tensor contractions 
(TCE) 
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X-TUNE Goals 
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X-TUNE Structure 

Pbound, 
Roofline 

CHiLL, 
CUDA-CHiLL 

Algorithm, 
Tuning Expertise 

Existing software all 
implemented using 
ROSE AST. 
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Autotuning Language Extensions 

•  Tunable Variables 
–  An annotation on the type of a variable (as in Sequoia) 
–  Additionally, specify range, constraints and a default 

value 
•  Computation Variants 

–  An annotation on the type of a function (as in 
PetaBricks) 

–  Additionally, specify (partial) selection criteria 
–  Multiple variants may be composed in the same 

execution 
Separate mapping description captures architecture-
specific aspects of autotuning.  



•  Foundational Concepts 
–  Identify search space through a high-level description 

that captures a large space of possible implementations 
–  Prune space through compiler domain knowledge and 

architecture features 
–  Provide access to programmers with transformation 

recipes, or recipes generated automatically by compiler 
decision algorithm 

–  Uses source-to-source transformation for portability, 
and to leverage vendor code generation  

–  Requires restructuring of the compiler 

Compiler-Based Autotuning 
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CHiLL Implementation 

CHiLL  
Driver and 

Transformation 
Algorithms 

Omega+  
Solves Constraints 

and Represents 
Integer Sets 

Codegen+  
Generates Loop Code 

by Scanning 
Polytopes 

Compiler Internal Representation, Abstract Syntax Tree 

CUDA-CHiLL  
cudaize.lua 
cudaize.py 



a in shared memory, both a and b are 
read through texture memory 

Different computation decomposition 
leads to additional tile command 

Nvidia TC2050 Fermi 
implementation 
Mostly corresponds to CUBLAS 
3.2 and MAGMA  

Nvidia GTX-280 implementation 
Mostly corresponds to CUBLAS 
2.x and Volkov’s SC08 paper 

Transformation Recipes for Autotuning:  
Incorporate the Best Ideas from Manual Tuning 
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•  Performance 
comparison with 
CUBLAS 3.2 

Compiler + Autotuning can yield comparable and even 
better performance than manually-tuned libraries 
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Matrix-Matrix Multiply (dgemm) 

Matrix-Vector Multiply (sgemv) 

“Autotuning, Code Generation and Optimizing Compiler Technology For GPUs,” M. 
Khan, PhD Dissertation, University of Southern California, May 2012. 



•  Performance modeling increases the 
automation in autotuning 
–  Manual transformation recipe generation is 

tedious and error-prone 
–  Implicit models are not portable across 

platforms  

Pbound: Performance Modeling for Autotuning 

•  Models can unify programmer guidance and compiler 
analysis 
–  Programmer can invoke integrated models to guide autotuning from 

application code 
–  Compiler can invoke models during decision algorithms 

•  Models optimize autotuning search 
–  Identify starting points 
–  Prune search space to focus on most promising solutions 
–  Provide feedback from updates in response to code modifications 
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Reuse distance 
•  For regular (affine) array 

references 
–  Compute reuse distance, to 

predict data footprints in 
memory hierarchy. 

–  Guides transformation and 
data placement decisions. 

Pbound: Reuse Distance and Cache Miss Prediction 

void foo() {	
  int i, j, k, n;	
  double y[10], x[10]; 	
  double z[10], a[10], b[10];	
  for (i = 0; i < 10; i++) 	
    x[i] = a[i] + b[i] ;	
  for (j = 0; j < 5; j++) 	
    y[j] = x[j]+ b[j] ;	
  for (k = 0; k < 10; k++) 	
    x[k] = y[k] ;	
  return;	
}	

Cache miss prediction 
•  Use to predict misses 
•  Assuming fully associative cache 

with n lines (optimistic case), a 
reference will hit if the reuse 
distance d<n.  

Reuse Distance 
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#include "pbound_list.h” 
void axpy4(int n, double *y, double a1, double *x1, double a2,  
double *x2, double a3, double *x3, double a4, double *x4){ 
#ifdef pbound_log   
pboundLogInsert("axpy.c@6@5",8,0,40 * ((n - 1) + 1) + 32,      
              8 * ((n - 1) + 1),3 * ((n - 1) + 1) + 1,4 * ((n - 1) + 1)); 
 #endif 
} 

void axpy4(int n, double *y, double a1, double *x1, double a2, 
 double *x2, double a3, double *x3, double a4, double *x4) { 
    register int i; 
    for (i=0; i<=n-1; i++) 
        y[i]=y[i]+a1*x1[i]+a2*x2[i]+a3*x3[i]+a4*x4[i]; 
} 

Pbound: Application signatures+architecture 



•  Single-core and multicore models for application 
performance will combine architectural information, 
user-guidance, and application analysis 

•  Models will be coupled with decision algorithms to 
automatically generate CHiLL transformation 
recipes 
–  Input: Reuse Information, Loop Information etc. 
–  Output: Set of transformation scripts to be used 

by empirical search 
•  Feedback to be used to refine model parameters 

and behavior 
•  Small and large application execution times will be 

considered 

How will modeling be used? 
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•  Stencil performance bound, when bandwidth limited:  
  Performance (gflops) <=  
    stencil flops * STREAM bandwidth / grid size 

•  Multigrid solves Au=f by calculating a number of corrections to 
an initial solution at varying grid coarsenings (“V-cycle”) 
–  Each level in the v-cycle: perform 1-4 relaxes (~stencil sweeps). 
–  Repeat multiple v-cycles reducing the norm of the residual by an order of 

magnitude each cycle. 

Example: Stencils and Multigrid 

Solve 

Restrict Interpolate 
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•  Some regions of the domain may require finer 
fidelity than others. 

•  In Adaptive Mesh Refinement, we refine 
those regions to a higher resolution in time 
and space. 

•  Typically, one performs a multigrid “level 
solve” for one level (green, blue, red) at a 
time. 

•  Coarse-fine boundaries (neighboring points 
can be at different resolutions) complicate 
the calculation of the RHS and ghost zones 
for the level. 

•  Each level is a collection of small (323 or 
643) boxes to minimize unnecessary work.  

•  These boxes will be distributed across the 
machine for load balancing (neighbors are not 
obvious/implicit) 

Multigrid and Adaptive Mesh Refinement 
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•  Focus is addressing data movement, multifaceted: 
–  Automate fusion of stencils within an operator.  Doing 

so may entail aggregation of communication (deeper 
ghost zones) 

–  Extend and automate the communication-avoiding 
techniques developed in CACHE. 

–  Automate application of data movement-friendly 
coarse-fine boundary conditions. 

–  Automate hierarchical parallelism within a node to AMR 
MG codes. 

–  Explore alternate data structures 
–  Explore alternate stencil algorithms (higher order, …) 

•  Proxy architectures: MIC, BG/Q, GPUs 
•  Encapsulate into an embedded DSL approach 

Autotuning for AMR Multigrid 
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•  Build integrated end-to-end autotuning, focused on AMR 
multigrid and tensor contractions 
–  Language and compiler guidance of autotuning 
–  Programmer and compiler collaborate to tune a code 
–  Modeling assists programmer, compiler writer, and search space 

pruning. 
•  Leverage and integrate with other X-Stack teams 

–  Our compiler technology all based on ROSE so can leverage from 
and provide capability to ROSE. 

–  Domain-specific technology to facilitate encapsulating our 
autotuning strategies.   

–  Collaborate with MIT on autotuning interface 
–  Common run-time for a variety of platforms (e.g., GPUs and MIC), 

and supports a large number of potentially hierarchical threads. 
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Summary and Leverage 


