HTA as a High-Level Programming
Model for Codelet Execution

Chih-Chieh Yang
May 2014

Outline

e Overview
e Parallel Intermediate Language (PIL)
e Hierarchically Tiled Array (HTA)
o Semantics
o Execution Model
e EXxperiments
o NAS Benchmarks
o Mini-benchmark
e Conclusion

Overview

e Hierarchically Tiled Array (HTA) is a high-
level programming model for expressing
parallel computation with operations on
tiled arrays

e \We've implemented the HTA library based
on Parallel Intermediate Language (PIL)

e Users write application code in HTA

e At compile time, PIL compiler translates
the code into SCALE code

Application

HTA

PIL

SCALE OpenMP

Outline

e Parallel Intermediate Language (PIL)

PIL - Parallel Intermediate Language

e An intermediate language for realizing any-to-any parallel programming
language conversion

HTA MPI
PIL
/ \

SCALE OpenMP OCR MPI

e PIL accepts a task graph as input
o A PIL node is the specification of a parallel task which is either a
single computation task or data parallel computation
o Users can create reusable task graphs and use as parallel library
function

PIL Node Syntax

node(label, index, [lower:step:upper], target, [labell, label2, ..., labelN], func(argl, arg2, ..., argN))

e label: the identifier for the node
e index: a variable used to identify execution instance in data parallel
computation
| [bounds]: Iteration space used to determine the number of data parallel
computation execution instances to spawn
e target: a variable that must be assigned during execution of the task to
determine the successor of the task
. e [labels]: possible successor nodes
e func: the serial function that performs the computation

An Example

#define NUM_ELEM (8)

void start(int *target, gpp_t index_array, gpp_t data_array, int inc_or_dec, int* array){
printf("start: inc_or_dec = %d.'\n", inc_or_dec);
*target = (inc_or_dec) ? (2) : (3);

}

void inc(int *target, gpp_t index_array, gpp_t data_array, int i, int* array){
printf("Increment array[%d]\n", i);
array[i]++;
*target = 4;

¥

void dec(int *target, gpp_t index_array, gpp_t data_array, int i, int* array){
printf("Decrement array[%d]\n", i);
array[i]--;
*target = 4;

}

void finish(int *target, gpp_t index_array, gpp_t data_array){
printf("Computation is done\n");
*target = 0;

node(1, NULL, [1:1:1], target, [2, 3], start(&target, index_array, data_array, inc_or_dec, &array))
node(2, i, [©:1:NUM_ELEM-1], target, [4], inc(&target, index_array, data_array, i, &array))

node(3, i, [©:1:NUM_ELEM-1], target, [4], dec(&target, index_array, data_array, i, &array)))
node(4, NULL, [1:1:1], target, [0], finish(&target, index_array, data_array))

entry

exit

PIL-to-SCALE Translation

e PIL compiler translates source-to-source from PIL program to SCALE
e For each PIL node, a swarm procedure is generated which contains a few

codelets
o Entry codelet creates all the body instances and the exit, and it also creates the
dependencies
o Body instances execute in parallel and satisfies one of the dependencies of the exit
o Exit codelet is queued and wait for dependencies to be satisfied by all body instances

Communication in PIL

swarm procedure void pil communicate (
pil comm param *input) {

e Communication takes place in

swarm codelet entry() {
SpeCiaI PIL nodes /* register recv codelet */
}
swarm codelet setup() {

if (input->recv) {
/* create dependence to fire exit ()
after the recv completes */

} else { /* fire send */ }
}
swarm codelet send() {

/* nw _call recv on remote machine */
}
swarm_codelet recv() {

/* unpack data */

/* satisfy dependence to fire exit */
}
swarm codelet exit () {

/* call next swarm procedure */

sender receiver }

Outline

e Hierarchically Tiled Array (HTA)
o Semantics
o Execution Model

HTA Programming Model

e Parallel computation is formulated as operations on tiled
arrays

e |n X-Stack projects, it is implemented as a library written
in PIL

o Facilitates application development through re-usable operations
o Allows users to control locality and provide hints to the codelet runtime
system

e Low-level details hidden from the user

o Initiation of parallel tasks
o Communication/synchronization between nodes

10

HTA Notations

flattened access

h(O, :)[Q\IZ, :]
e h=newhta(2, (2, 2). (4, 4))) 3R
o 2x2 at the root level bbbl L
o 4x4 at the leaf level ceoolonos
e Access operators e

o ()is used to access tiles ma naoo
o []is used to index scalar
elements directly

scalar access

Root level

Leaf level O
]

* In this project, we implement in C, so the chained
access will be like:
access_scalar(access_tile(h, 1, 0), 0, 3)

Metadata

Raw data

Cannon’s Algorithm

Initial shift 2nd for loop
<.—
< Row i shift left by i A AL Each row shift left by 1
A i

i shi ' Each column shift up by 1
A T_ Column i shift up by i B Alala p Dy

Cannon’s Matrix-Matrix Multiplication in

HTA

01 function C = cannon(A,B,C)

03 A(i,:) = circshift(A(i,:), [0, -(i-1)1);

04 B(:,i) = circshift(B(:,1i), [-(i-1), 2]);

g angT e

@6 -For‘ k=1:m_1
07 C=C+A * B;

08

09 A = circshift(A, [0, -1]);

10 B = circshift(B, [-1, ©]);

G

12 end

sequential

sequential

13

HTA Operations

e Creation

o Allocates space for metadata and raw data
e Access

o |ndexing in the hierarchy

o Can either access a scalar element, a tile, or a
flattened array
e Assignment
o Modify values in tiles
o Legal if the shape of RHS is conformable to the LHS

14

Map

r = map (@sin, h)

@sin

Recursive

15

Map

r = map (@sin, h)

Recursive

16

Map

r = map ((@sin, h)

Recursive

17

Reduce

r = reduce (@max, h)

Recursive

18

Reduce

r = reduce (@max, h)

Recursive

19

Reduce

r = reduce (@max, h)

— (@max @max ——
\ /
@max
—— (@max \@max

Recursive

20

Higher level operations

e

. repmat(h, [1, 3])

—_—

HER
I circshift(h, [0, -1]) 1

transpose(h)

Execution Model

e Shared memory -> fork-join

o Sequential part is executed by a master process

o Whenever an HTA operation is encountered, the master
spawns worker processes to perform tasks in parallel

o Synchronization barrier is not always needed and can be
relaxed

e Distributed memory -> SPMD

o Sequential part is redundantly computed on all processes
o HTA operations are executed in parallel by the processes
involved

22

Execution Models

Shared Memory Fork/Join

g N\
Sequential | "
Parallel
Sequential | ‘
N\ 4

Distributed Memory SPMD

Sequential

Y. V.Y
Parallel

\A1A 21A |
Sequential viviY

23

Data Distribution

e Data placement
o The tree structure is duplicated on all processes
o The leaf raw data is distributed and each leaf tile has a single owner

e Communication
o Implemented with point-to-point communication mechanism provided
by PIL
m pil send and pil_recv
o Possible to implement optimized collective operations in PIL
m Broadcast, reduction, all-to-all exchange, ... etc.

24

PO P1 P2 P3

SPMD Execution 8@

01 #define EXP (8)

7O
&©

02 void power(HTA *r, HTA* h) {

03 double* datal = r->leaf.raw, data2 = h->leaf.raw;

04 int num_elem = Tuple_product(&r->flat_size);

05 for(int i = @; i < num_elem; i++) {

06 double x = data2[i]; HTA create

07 POW(X, EXP); B :E -E]
08 datal[i] = x;

09 } :E

0) L]
11 int hta_main() { Parallel

12 HTA *h = HTA_create(...); Initialization of h =
13 HTA *r = HTA create(...);
14 HTA_map(init, h);

15 HTA_map(power, r, h); // r = pow(h, exp)

16 }

25

H

Communication Patterns

h(@, 1) = 0;

e Assign scalar value 0 to all elements
in tile h(0, 1)

e Only the process that owns h(0, 1) will
perform the assignments

t(5) = x(3);

e Overwrite tile t(5) with tile x(3)

e The process that owns x(3) sends the
tile and t(5)’s owner receives and
overwrites raw data

t(1:n) = x(3) + 1;

Assign all tiles in t of with x(3) + 1

First the owner of x(3) increments all
elements

It then broadcasts the resulting tile to
owners of (1) to t(n)

When the broadcast is completed, the
owners of (1) to t(n) overwrites the tile with
newly received tile

int w = x(3)[2];

Owner of x(3) reads x(3)[2] and

broadcasts the scalar value to all others

All others assign the scalar value to the
variable w 26

HTA Operations and Their Corresponding

Communication Patterns

HTA Operation Communication Pattern
Assignment Send/receive
Access Broadcast
Reduce Reduce
Scan Send/receive
Circular shift Send/receive
Repmat Broadcast
Transpose All-to-all

All of the patterns can be implemented with point-to-point send/receive

27

Outline

e EXxperiments
o NAS Benchmark
o Mini-benchmark

28

NAS Parallel Benchmarks Implementation
with HTA

e \We have implemented six of the NAS Parallel
Benchmarks with HTA running on ETI SWARM runtime
(shared memory)

o EP,IS, CG, LU, MG, FT
e EXxperiments conducted on a multi-core shared memory

machine using up to 64 threads
o 4 Intel Xeon E7-4860 CPU, each with 10 cores (80 hardware threads)
e Preliminary performance results obtained

o Execution time compared with highly tuned OpenMP implementation

o Overhead analysis on-going 29

Total execution time

Total execution time (sec)

Total execution time (sec)

Performance Results

LU: LU Factorization(CLASS = C)

EP: Embarassingly Parallel(CLASS = C)

450 -
400 =< OMP
350 »— HTA/SWARM|]
300 1
250
200
150
100
50
00 1I0 2‘0 3‘0 40 .‘;0 60 70
50 IS: Integer Sort(CLASS = C)
= OMP
aor < HTA/SWARM|]
30f
201
101
0 : : — : -
0 10 20 30 40 50 60 70
100 MG: Multigrid Method(CLASS = C)
= OMP
80P, < HTA/SWARM|]
60}
40f
201
0 1 " L . 1 1 1
0 10 20 30 40 50 60 70

=
o N
o o
==

800
600
400

Total execution time (sec)

OoMP

—x

= HTA/SWARM

(=)

10

20

30

40 50 60

CG: Conjugate Gradient(CLASS = C)

OMP
HTA/SWARM

*—x

»¥—x

10

20

30

40 50 60 70

FT: Fast Fourier Transform(CLASS = C)

S 200f

10

Total execut
-
v o
= =]

= OMP

~— HTA/SWARM||

40 50 60

70

Slow-down due to:
1. Algorithm
differences
(programming
model dependent)
2. Unidentified
overhead in
different levels of
the software stack

30

Mini-benchmark

e We created mini-benchmark programs that

Mini-benchmark Performance Comparison

w
w

¢4 SCALE
¢—¢ OpenMP
|| & HTA/SCALE
¢—¢ HTA/OpenMP

are written directly in SCALE and OpenMP
and compare with the HTA versions

e The benchmark performs a large number
of parallel operation invocations in a for

loop
o Memory bound
o Fix-sized data set

e Pure-SCALE version shows significant 1

w
(=]

= N N
a =) o

Total execution time (sec)

=
o

S

®

overhead % % TR R

Number of threads

o SWARM runtime startup/finishing overhead
o Serialization in spawning new codelets

Invoking a parallel operation for 10000 times

31

Overhead in Invoking Parallel Operation

swarm_codelet entry() {
int np = hl->size;
dep.requires(np + 1) =>exit;

for(int 1 = @; i < np; i++)
do => pwmul(hl->tiles[i], h2->tiles[i], h3->tiles[i]);

swarm_Dep_satisty(&dep, 10);

Sequentially spawning workers with
argument boxing (memory copying)

<

swarm_codelet entry() {
int np = _num = hl->size;
_ctr = 0;
_h1 = hl; _h2 = h2; _h3 = h3;
dep.requires(np + 1) => exit;

NULL, NULL, NULL, swarm_Scheduler_ORDER_FIFO);

swarm_Locale_scheduleTolLeaves(swarm_getRootLocale(NULL), np, swarm_cargs(pwmull),Spawn a task for each worker

thread w/o argument boxing

swarm_Dep_satisty(&dep, 10);

32

30

25F

Total execution time (sec)

Performance Improvement of the Mini-

benchmark

Mini-benchmark Performance Comparison

¢ SCALE
¢—¢ OpenMP

201

15},

10 20 30 40 50 60 70
Number of threads

Original

Total execution time (sec)

30 Mini-benchmark Performance Comparison

é—¢ SCALE
¢—¢ OpenMP

25F

20

0 10 20 30 40 50 60
Number of threads

Using swarm_Locale_scheduleToLeaves

70

33

Conclusion

e Current Status

o Further analysis of the overhead in the HTA library
and PIL generated code

e Future Work

o Implement SPMD execution
o Optimize PIL collective communication API
o Extend HTA with CnC

34

Backup Slides

Circular Shift

A communication operation
It shifts data tiles along the selected dimension by the specified distance

Qe QuQu@=@
dimension
* Circular shift
3 4
HTA circular_shift(h(:, 1), o, 1); setup . o] . . . & . -
. * Circular shift 0]
distance R
communication !\ :> :> @ m@ ©
Circular shift
=" OF OB OF OF O%
= 0 T i L

SPMD Execution

e On the distributed memory machine, HTA programs

execute in SPMD fashion
o Serial part is redundantly computed on all processes
o HTA operations are executed in parallel by the processes

Involved

m Each process can determine if it is involved

m Owner computes: computation happens at the owner of the tile
being modified

Creation

HTA *h = HTA create(...);

e Each process allocates space locally
and no communication is required
e Tree structure (metadata) is cloned on

each process
o A process knows about where to look for
the data if not locally owned

e Only the owner allocates space for
leaf level raw data tile

Clone

PO

P1

P2

P3

