
HTA as a High-Level Programming
Model for Codelet Execution

Chih-Chieh Yang
May 2014

Outline
● Overview
● Parallel Intermediate Language (PIL)
● Hierarchically Tiled Array (HTA)

○ Semantics
○ Execution Model

● Experiments
○ NAS Benchmarks
○ Mini-benchmark

● Conclusion
1

Overview
● Hierarchically Tiled Array (HTA) is a high-

level programming model for expressing
parallel computation with operations on
tiled arrays

● We’ve implemented the HTA library based
on Parallel Intermediate Language (PIL)

● Users write application code in HTA
● At compile time, PIL compiler translates

the code into SCALE code

HTA

PIL

Application

SCALE OpenMP

2

Outline
● Overview
● Parallel Intermediate Language (PIL)
● Hierarchically Tiled Array (HTA)

○ Semantics
○ Execution Model

● Experiments
○ NAS Benchmark
○ Mini-benchmark

● Conclusion
3

PIL - Parallel Intermediate Language
● An intermediate language for realizing any-to-any parallel programming

language conversion

● PIL accepts a task graph as input
○ A PIL node is the specification of a parallel task which is either a

single computation task or data parallel computation
○ Users can create reusable task graphs and use as parallel library

function

HTA MPI

PIL

SCALE OpenMP OCR MPI

4

PIL Node Syntax

● label: the identifier for the node
● index: a variable used to identify execution instance in data parallel

computation
● [bounds]: Iteration space used to determine the number of data parallel

computation execution instances to spawn
● target: a variable that must be assigned during execution of the task to

determine the successor of the task
● [labels]: possible successor nodes
● func: the serial function that performs the computation

5

An Example

1

2 3

4

entry

exit

start

finish

inc dec

6

PIL-to-SCALE Translation
● PIL compiler translates source-to-source from PIL program to SCALE
● For each PIL node, a swarm procedure is generated which contains a few

codelets
○ Entry codelet creates all the body instances and the exit, and it also creates the

dependencies
○ Body instances execute in parallel and satisfies one of the dependencies of the exit
○ Exit codelet is queued and wait for dependencies to be satisfied by all body instances

entry

bodybodybody

exit

7

Communication in PIL
● Communication takes place in

special PIL nodes

swarm_procedure void pil_communicate(
 pil_comm_param *input) {

 swarm_codelet entry() {
 /* register recv codelet */
 }
 swarm_codelet setup() {
 if (input->recv) {
 /* create dependence to fire exit()
 after the recv completes */
 } else { /* fire send */ }
 }
 swarm_codelet send() {
 /* nw_call recv on remote machine */
 }
 swarm_codelet recv() {
 /* unpack data */
 /* satisfy dependence to fire exit */
 }
 swarm codelet exit() {
 /* call next swarm_procedure */
 }
}

sender receiver 8

Outline
● Overview
● Parallel Intermediate Language (PIL)
● Hierarchically Tiled Array (HTA)

○ Semantics
○ Execution Model

● Experiments
○ NAS Benchmark
○ Mini-benchmark

● Conclusion
9

HTA Programming Model
● Parallel computation is formulated as operations on tiled

arrays
● In X-Stack projects, it is implemented as a library written

in PIL
○ Facilitates application development through re-usable operations
○ Allows users to control locality and provide hints to the codelet runtime

system
● Low-level details hidden from the user

○ Initiation of parallel tasks
○ Communication/synchronization between nodes

10

HTA Notations

● h = new hta(2, ((2, 2), (4, 4)))
○ 2x2 at the root level
○ 4x4 at the leaf level

● Access operators
○ () is used to access tiles
○ [] is used to index scalar

elements directly

Metadata

Raw data

Root level

Leaf level

flattened access

tile access
scalar access

* In this project, we implement in C, so the chained
access will be like:
access_scalar(access_tile(h, 1, 0), 0, 3) 11

Cannon’s Algorithm
Initial shift

A

B

2nd for loop

A

B

Row i shift left by i

Column i shift up by i

Each row shift left by 1

Each column shift up by 1

12

Cannon’s Matrix-Matrix Multiplication in
HTA

sequential

parallel

parallel

sequential

sequential

13

HTA Operations
● Creation

○ Allocates space for metadata and raw data
● Access

○ Indexing in the hierarchy
○ Can either access a scalar element, a tile, or a

flattened array
● Assignment

○ Modify values in tiles
○ Legal if the shape of RHS is conformable to the LHS

14

15

16

17

18

19

20

21

Execution Model

● Shared memory -> fork-join
○ Sequential part is executed by a master process
○ Whenever an HTA operation is encountered, the master

spawns worker processes to perform tasks in parallel
○ Synchronization barrier is not always needed and can be

relaxed

● Distributed memory -> SPMD
○ Sequential part is redundantly computed on all processes
○ HTA operations are executed in parallel by the processes

involved
22

Shared Memory Fork/Join Distributed Memory SPMD

Execution Models

23

Data Distribution
● Data placement

○ The tree structure is duplicated on all processes
○ The leaf raw data is distributed and each leaf tile has a single owner

● Communication
○ Implemented with point-to-point communication mechanism provided

by PIL
■ pil_send and pil_recv

○ Possible to implement optimized collective operations in PIL
■ Broadcast, reduction, all-to-all exchange, ... etc.

24

SPMD Execution
P0 P1 P2 P3

h
3

h
2

h
1

h
0

HTA_create

h
3

h
2

h
1

h
0

h
3

h
2

h
1

h
0
r
0

r
1

r
2

r
3

h
3

h
2

h
1

h
0
r
0

r
1

r
2

r
3

Parallel
Initialization of h

h
3

h
2

h
1

h
0
r
0

r
1

r
2

r
3

h
3

h
2

h
1

h
0
r
0

r
1

r
2

r
3

h
3

h
2

h
1

h
0
r
0

r
1

r
2

r
3

HTA_create

HTA_map 25

Communication Patterns

● Assign scalar value 0 to all elements
in tile h(0, 1)

● Only the process that owns h(0, 1) will
perform the assignments

● Overwrite tile t(5) with tile x(3)
● The process that owns x(3) sends the

tile and t(5)’s owner receives and
overwrites raw data

● Assign all tiles in t of with x(3) + 1
● First the owner of x(3) increments all

elements
● It then broadcasts the resulting tile to

owners of t(1) to t(n)
● When the broadcast is completed, the

owners of t(1) to t(n) overwrites the tile with
newly received tile

● Owner of x(3) reads x(3)[2] and
broadcasts the scalar value to all others

● All others assign the scalar value to the
variable w 26

HTA Operations and Their Corresponding
Communication Patterns

HTA Operation Communication Pattern

Assignment Send/receive

Access Broadcast

Reduce Reduce

Scan Send/receive

Circular shift Send/receive

Repmat Broadcast

Transpose All-to-all

All of the patterns can be implemented with point-to-point send/receive 27

Outline
● Overview
● Parallel Intermediate Language (PIL)
● Hierarchically Tiled Array (HTA)

○ Semantics
○ Execution Model

● Experiments
○ NAS Benchmark
○ Mini-benchmark

● Conclusion
28

NAS Parallel Benchmarks Implementation
with HTA

● We have implemented six of the NAS Parallel
Benchmarks with HTA running on ETI SWARM runtime
(shared memory)
○ EP, IS, CG, LU, MG, FT

● Experiments conducted on a multi-core shared memory
machine using up to 64 threads
○ 4 Intel Xeon E7-4860 CPU, each with 10 cores (80 hardware threads)

● Preliminary performance results obtained
○ Execution time compared with highly tuned OpenMP implementation
○ Overhead analysis on-going

29

Performance Results

Slow-down due to:
1. Algorithm
differences
(programming
model dependent)
2. Unidentified
overhead in
different levels of
the software stack

30

Mini-benchmark
● We created mini-benchmark programs that

are written directly in SCALE and OpenMP
and compare with the HTA versions

● The benchmark performs a large number
of parallel operation invocations in a for
loop
○ Memory bound
○ Fix-sized data set

● Pure-SCALE version shows significant
overhead
○ SWARM runtime startup/finishing overhead
○ Serialization in spawning new codelets Invoking a parallel operation for 10000 times

31

Overhead in Invoking Parallel Operation

Sequentially spawning workers with
argument boxing (memory copying)

Spawn a task for each worker
thread w/o argument boxing

32

Performance Improvement of the Mini-
benchmark

Original Using swarm_Locale_scheduleToLeaves
33

Conclusion

● Current Status
○ Further analysis of the overhead in the HTA library

and PIL generated code
● Future Work

○ Implement SPMD execution
○ Optimize PIL collective communication API
○ Extend HTA with CnC

34

Backup Slides

Circular Shift

43210

43210

32104

SR SR SR SR SR
0 1 2

4

3

43210

Circular shift
setup

Circular shift
communication

Circular shift
clean up

● A communication operation
● It shifts data tiles along the selected dimension by the specified distance

SPMD Execution
● On the distributed memory machine, HTA programs

execute in SPMD fashion
○ Serial part is redundantly computed on all processes
○ HTA operations are executed in parallel by the processes

involved
■ Each process can determine if it is involved
■ Owner computes: computation happens at the owner of the tile

being modified

Creation

● Each process allocates space locally
and no communication is required

● Tree structure (metadata) is cloned on
each process
○ A process knows about where to look for

the data if not locally owned
● Only the owner allocates space for

leaf level raw data tile

Clone

P0 P1 P2 P3

