
Millad Ghane, John Stone, CJ Newburn

Version 17071100

HiHAT Proof of Concept Update
Hierarchical Heterogeneous Asynchronous Tasking

2

OUTLINE

• Goals

• Current infrastructure capabilities

• Microbenchmark overheads

• Molecular Orbitals app

• Portability

3

GOALS OF POC

• Drive and demonstrate tangible progress

• Offer an initial strawman design to iterate and get feedback on

• Demonstrate feasibility of low overheads, good absolute performance

• Identify key opportunities, e.g. ease of use wrt API

4

CURRENT INFRASTRUCTURE CAPABILITIES

• Current test platform: 2 CPU sockets + 2 GPUs in one node

• Data movement

• User Layer: <dst, src, size> addresses without memory resource association

• Common Layer: add memory resources associated with addresses

• Set up comms, establish visibility as needed

• Data management

• User Layer: Allocate or wrap, and create address-memory resource association

• Also support tagging to clean up a set of allocations/wraps at once

• Common Layer: Actual alloc/free

• Invocation

• Register target-specific implementations, invocation with closure (args + member data)

The basics are already working

5

MICROBENCHMARK OVERHEADS
Always less than 2% or 500ns, before perf tuning

Still improving confidence in overhead quantification (power mgt, timing overhead)

6

MOLECULAR ORBITALS (MO) APPLICATION

• Compute wavefunction amplitudes on a grid for visualization
• Evaluate linear combination of Gaussian contractions

(polynomials) at each grid point, function of distance from atoms
• Algorithm made arithmetic bound via fast on-chip memory

systems
• Three different algorithms for different data sizes and hardware:

• GPU constant memory
• shared memory tiling
• L1 global memory cache

• Representative of a variety of other grid-oriented algorithms,
stencil codes, etc.

• Initial adaptation from CUDA to HiHAT proof-of-concept took
roughly 90 minutes

• Use of special GPU hardware features, APIs helped drive
completeness of HiHAT proof-of-concept implementation already
at an early stage

7

MO PERFORMANCE

• Performance of MO algorithm on HiHAT User Layer PoC implementation closely
tracks CUDA performance.

• CPU baseline results for the tests below: Xeon E5-2260v3 301 ms, 2xPOWER8 520ms

8

PORTABILITY ON MO
Mapping between CUDA and HiHAT

• Time to port MO: 90 minutes

• Mostly 1:1 mapping

• Some CUDA APIs not covered yet

• HiHAT has fewer unique APIS (9 vs. 11)

• AllocBuffer handles flags

• WrapBuffer handles symbols

• HiHAT has fewer static API calls (32
vs. 39) when tagging scheme is used
for cleanup

