
X-TUNE
Autotuning for Exascale: Self-Tuning Software to Manage Heterogeneity

Principal	 Investigator:	 Mary	 Hall	 (University	 of	 Utah)	
Other	 Investigators:	 	

Jeff	 Hammond,	 Paul	 Hovland,	 Sri	 Hari	 Krishna	 Narayanan	 and	 Stefan	 Wild	 (ANL);	
Leonid	 Oliker,	 Brian	 Van	 Straalen	 and	 Samuel	 Williams	 (LBNL);	

Jacqueline	 Chame	 (USC/ISI)	
http://ctop.cs.utah.edu/x-‐tune/

	
Objectives	
We will develop the first unified autotuning framework that seamlessly integrates programmer-
directed and compiler-directed autotuning, so that a programmer and the compiler system can
work collaboratively to tune a code, unlike previous systems that place the entire tuning burden
on either programmer or compiler. The proposed system will dramatically improve generality and
usability of autotuning technology through an integrated, composable collection of tools,
including an autotuning compiler framework, language extensions, a code transformation
framework, compiler decision algorithms and performance models. To maximize productivity
impact of autotuning and make it approachable by many users, it should be encapsulated in
domain-specific tools developed by expert users and made available to others. To this end, we
will demonstrate autotuning on computations from AMR MG, Combustion Co-Design Center,
TCE and Nek5000, and will work with DOE to define a small number of other mini-app
demonstrations. We will identify opportunities for integration, software reuse and
demonstrations with other X-stack projects.
	
X-TUNE	 Framework	
The	 X-‐TUNE	 framework	 is	 described	 in	 the	 following	 figure.	

	
Figure:	 X-TUNE	 End-to-End	 Autotuning	 System.	

domain-specific
algorithm

search space

empirical evaluation

code variant with
instantiated parameters

program with autotuning
language extensions

programmer-specified
mappings (recipes)

compiler
decision

algorithms

optimized program

code transformation and code generation

models

search engine

performance bounds

starting points

power bounds

domain-specific library

domain-
specific

algorithm

code variant with
parameter ranges
code variant with
parameter ranges
code variant with
parameter ranges

architectural features

tensor computations

ca-amr multigrid

krylov methods

	
Overview	
• Expert developers employ autotuning under their control by expressing code variants and

optimization parameters, arising in program specification or in directing compiler optimization.
Code variants may include different algorithms for implementing a computation, or
implementations partially customized to different target processors (e.g., in today’s systems,
this might be OpenMP code for a conventional multicore and CUDA code for a GPU).
Optimization parameters refer to discrete values that govern optimization or code generation
(e.g., number of threads to apply to a computation).

• An autotuning transformation and code generation framework called CHiLL employs a
polyhedral representation to transform computation and manage complex memory hierarchies.
Transformation recipes describe the mapping of the source code to a particular architecture.

• By focusing on particular application domains, we can customize the programmer guidance,
compiler decision algorithms and recipes to the needs of the domains.

• The language constructs and transformation recipes describe a search space of possible
implementations (search algorithms funded by other efforts).

• The compiler decision algorithms and autotuning search will consult performance models using
the PBound modeling software.

• Additional end-to-end support includes specialization and dynamic selection of optimized
variants, along with triage to identify where in the program to focus autotuning efforts.

• Domains include adaptive multigrid and tensor contractions, and similar problems from the
Exascale Co-Design Centers.

• Near-term architectures serve as proxies for exascale platforms, including the Xeon Phi (MIC),
BGQ, and GPUs.

	
Case	 study:	 Adaptive	 Mesh	 Refinement	 Multigrid	
Multi-grid codes exhibit:
• few stencil (operator) executions and limited reuse of data within each sweep.
• exponentially decreasing parallelism and high communication costs.

Adaptive Mesh Refinement adds complexity through inclusion of
• many small (possibly irregularly shaped) boxes, complex (coarse-fine) boundary conditions and

complex communication patterns.
Real applications demand solvers for particularly complex systems/operators
• productive operator descriptions lend themselves to inefficient implementations, while efficient

implementations are rarely portable.
Focus on data movement (since it is the bottleneck)
• support communication-avoiding algorithms, stencil fusion, optimize coarse-fine boundary

conditions, express and tune hierarchical parallelism within a node, optimize high-order
stencils.

	
Impact	
• Expert programmer and compiler work collaboratively to tune a code.
• Programmer guides optimization, but relies on system to carry out tedious details including

code generation and management of autotuning experiments.
• The autotuning process is designed to be encapsulated in domain-specific tools so that other

less-sophisticated users of the software can reap the benefit of the expert programmers’ efforts.
• 	 New optimization strategies can be added to an existing code base, and machine-specific details

are isolated from the high-level source code.

	 	

