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Objectives	  
We will develop the first unified autotuning framework that seamlessly integrates programmer-
directed and compiler-directed autotuning, so that a programmer and the compiler system can 
work collaboratively to tune a code, unlike previous systems that place the entire tuning burden 
on either programmer or compiler. The proposed system will dramatically improve generality and 
usability of autotuning technology through an integrated, composable collection of tools, 
including an autotuning compiler framework, language extensions, a code transformation 
framework, compiler decision algorithms and performance models.   To maximize productivity 
impact of autotuning and make it approachable by many users, it should be encapsulated in 
domain-specific tools developed by expert users and made available to others.  To this end, we 
will demonstrate autotuning on computations from AMR MG, Combustion Co-Design Center, 
TCE and Nek5000, and will work with DOE to define a small number of other mini-app 
demonstrations.  We will identify opportunities for integration, software reuse and 
demonstrations with other X-stack projects. 
	  
X-TUNE	  Framework	  
The	  X-‐TUNE	  framework	  is	  described	  in	  the	  following	  figure.	  

	  
Figure:	  X-TUNE	  End-to-End	  Autotuning	  System.	  
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Overview	  
• Expert developers employ autotuning under their control by expressing code variants and 

optimization parameters, arising in program specification or in directing compiler optimization.  
Code variants may include different algorithms for implementing a computation, or 
implementations partially customized to different target processors (e.g., in today’s systems, 
this might be OpenMP code for a conventional multicore and CUDA code for a GPU).  
Optimization parameters refer to discrete values that govern optimization or code generation 
(e.g., number of threads to apply to a computation). 

• An autotuning transformation and code generation framework called CHiLL employs a 
polyhedral representation to transform computation and manage complex memory hierarchies.  
Transformation recipes describe the mapping of the source code to a particular architecture.  

• By focusing on particular application domains, we can customize the programmer guidance, 
compiler decision algorithms and recipes to the needs of the domains. 

• The language constructs and transformation recipes describe a search space of possible 
implementations (search algorithms funded by other efforts). 

• The compiler decision algorithms and autotuning search will consult performance models using 
the PBound modeling software. 

• Additional end-to-end support includes specialization and dynamic selection of optimized 
variants, along with triage to identify where in the program to focus autotuning efforts. 

• Domains include adaptive multigrid and tensor contractions, and similar problems from the 
Exascale Co-Design Centers.   

• Near-term architectures serve as proxies for exascale platforms, including the Xeon Phi (MIC), 
BGQ, and GPUs.  

	  
Case	  study:	  Adaptive	  Mesh	  Refinement	  Multigrid	  
Multi-grid codes exhibit:  
• few stencil (operator) executions and limited reuse of data within each sweep. 
• exponentially decreasing parallelism and high communication costs. 

Adaptive Mesh Refinement adds complexity through inclusion of  
• many small (possibly irregularly shaped) boxes, complex (coarse-fine) boundary conditions and 

complex communication patterns. 
Real applications demand solvers for particularly complex systems/operators 
• productive operator descriptions lend themselves to inefficient implementations, while efficient 

implementations are rarely portable. 
Focus on data movement (since it is the bottleneck) 
• support communication-avoiding algorithms, stencil fusion, optimize coarse-fine boundary 

conditions, express and tune hierarchical parallelism within a node, optimize high-order 
stencils. 

	  
Impact	  
• Expert programmer and compiler work collaboratively to tune a code. 
• Programmer guides optimization, but relies on system to carry out tedious details including 

code generation and management of autotuning experiments. 
• The autotuning process is designed to be encapsulated in domain-specific tools so that other 

less-sophisticated users of the software can reap the benefit of the expert programmers’ efforts. 
• 	  New optimization strategies can be added to an existing code base, and machine-specific details 

are isolated from the high-level source code. 

	   	  


