Traleika Glacier (X-Stack) — Intel Team

Scope of Traleika Glacier Project

Goals and Objectives

Goal:
Research and mature software technologies addressing major
Exascale challenges and get ready to intercept by 2018-2020

Objectives:

Energy efficiency | SW components interoperate, harmonize, exploit HW features,
and optimize the system for energy efficiency

Data locality PGM system & system SW optimize to reduce data movement

Scalability

SW components scalable, portable to O(10°)—extreme parallelism

Programmability | New (Codelet) & legacy (MPI), with gentle slope for productivity

Execution model | Objective function based, dynamic, global system optimization

Self-awareness Dynamically respond to changing conditions and demands

Asymptotically provide reliability of N-modular redundancy using
HW/SW co-design; HW detection, SW correction

Resiliency

Straw-man System Architecture and Evaluation

Processor Chip

E

Execution Engine (XE)
Optimized for apps
Large local stores
for data locality

Control Engine (CE)

fir

Optimized for execution
model and resiliency

Fine grain energy management
Processor Node with DRAM

Architecture embraces data-locality, and tapered BW

7z
-
=:
-
-
-
=

Runtime Research Agenda

* Locality aware scheduling—heuristics for locality/E-efficiency
— Extensions to standard Habanero-C runtime
* Adaptive boosting and idling of hardware
— Avoid energy expensive unsuccessful steals that perform no work
— Turbo mode for a core executing serial code
— Fine grain resource (including energy) management
* Dynamic data-block movement
— Co-locate codelets and data
— Move codelets to data
* Introspection and dynamic optimization
— Performance counters, sensors provide real time information
— Optimization of the system for user defined objective
— (Go beyond energy proportional computing)

1

X-Stack Components Put Together

X-Stack Scope

Applications
Community

Co-Design Centers
Representing

Vendor
Community

Intel Representing

Programming System Components

© %A Front-End
%
%
%
programming anguagels) | 4 K
Compilers Qob
(incl s25 and optimizations) x

Hydra
(Library
Generator)

High Level
Language
(Chapel)

Library
(HTA)

Intel
Research
Runtime

OpenmP

Translate parallel languages into codelets
Parallel Intermediate Language (PIL)

Identify new programming constructs

Evaluate: Performance, Data Locality, Energy,...

Simulators and Tools, Leverage UHPC, and Go Beyond

AFL .
Application faking

Library °
IRR AP! + Extensions .
FSim

Functional Simulator

e “ cons

* Does not model real architecture

Near-native application code execution ~* Does not model advanced ISA features

on host processor * Does not reflect expected timing of simulated
Rapid application development system

Epoch statistics as well as total statistics

64-bit Linux IRR implementation

Every hardware unit modeled, exact
memory and network hierarchies
including messages

Complete statistics and trace file

>10 MIPS per core speed

Massively parallel and distributed, limited
only by machine pool

+ Does not have a timing model
+ Lower speed, highly detailed

Power
Estimator

Memory
Analyzer

+ Compares configurations

Uses statistics/counters to make + Scales from 45nm to 7nm = Only models dynamic
energy and area estimates for projections. power, uses circuit models
application behavior « Automatic analysis of for leakage

outputs from FSim runs. + Calibrated to existing

commercial devices

Detailed models for cache and/or ~ + Calls into Power Estimator * Does not model Instruction
scratchpad hierarchies, various * Enables limited AFL trace fetch/execution

levels & types of coherence power estimation * Limited to AFL-compatible
memory traces at this time

12

3 Year Roadmap

Energy Efficiency
Data locality

Resilienc - .
High level notations
‘ Compiler
Transformations
Separation of domain
PGM System specification & tuning
CnC, HTA, R-Stream

Separation of CE & XE
Large local stores
Sensors: self-awareness
Fine grain E management

" Straw-man System
Architecture

Algorithms and
Applications

User

‘ Generate codelets

Simulators, Tools .
L e Defined
’ . Objecti Tools
Native & .target code Low level Compilers,
execution, PMU Lvm
Statistics
System SW J
HW/SW co-design ‘ Exec Mocel OPEN | pynamic scheduling of
Reactive & proactive untime codelets
Resiliency Self-aware, Fine grain

Asymptotic N-modular
Redundan:

resource management
Resiliency manager

Q4'12 |Q1'13 Q2'13 Q3'13 Q4'13 |Q1'14 Q2'14 Q3'14 Q4'14 |Q1'15 Q2'15 Q3'15

[Algorithms and applications

¥ pute)
Proxy app evalution for O(comm)
Evaluation of system architecture:
Programming system
[select apps coded, for runtime system
[Tools
Resiliency

W, Runti

V20 —

<-Mod fd s<-bval

|Architecture, simulators
|system Evaluation

<A V2,05 |<Sim2.0> <Fault M><Timing > <--Eval-->[<AV2.5> <Sim 25> <-Eval--> <AV3.0>

Arch Rev 1 (UHPC leveraged)

Arch Rev 2 incorporates X-Stack

Final Evaluation
Release OCR 1.0

Arch Rev 2.5 enhanced for X-Stack
with initial findings

Arch Rev 3.0 X-Stack final

