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Project Goals

= Deliver prototype OS/R environment for R&D in extreme-
scale scientific computing

= Focus on application composition as a fundamental driver

= Develop necessary OS/R interfaces and system services required to
support resource isolation and sharing

= Support complex simulation and analysis workflows
= Provide a lightweight OS/R environment with flexibility to
build custom runtimes
= Compose applications from a collection of enclaves
= Leverage Kitten lightweight kernel and Palacios lightweight
virtual machine monitor

= Enable high-risk high-impact research in virtualization, energy/power,
scheduling, and resilience




Systems Are Converging to Reduce Data Movement

= External parallel file system is being subsumed
= Near-term capability systems using NVRAM-based burst buffer
= Future extreme-scale systems will continue to exploit persistent
memory technologies
" |n-situ and in-transit approaches for visualization and analysis
= Can’t afford to move data to separate systems for processing
= GPUs and many-core processors are ideal for visualization and some
analysis functions
= |ess differentiation between advanced technology and
commodity technology systems Paralle! File

Analytics System Visualization

. . . Clust
= On-chip integration of processing, cluster S

memory, and network '
ili Capacity
. . . . . Capability -apacit
= Summit/Sierra using InfiniBand System

Exascale
System




Applications and Usage Models are Diverging

Application composition becoming more important
= Ensemble calculations for uncertainty quantification
= Multi-{material, physics, scale} simulations
= In-situ analysis and graph analytics
= Performance and correctness analysis tools
=  Applications may be composed of multiple programming models

= More complex workflows are driving need for advanced OS services and
capability
= “Workflow” overtaken “Co-Design” as most popular DOE buzzword ©

= Desire to support “Big Data” applications
= Significant software stack comes along with this

=  Support for more interactive workloads
= Requirements are independent of programming model and hardware



ENCLAVE COMPOSITION



Composition in Hobbes
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Composition in Argo
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Enabling Multi-OS/R Stack Application Composition

Problem
HPC applications evolving to more compositional approach, overall application is a

composition of coupled simulation, analysis, and tool components
Each component may have different OS/R requirements, no “one-size-fits-all” OS/R stack

Solution

Partition node-level resources into “enclaves”, run different OS/R instance in each enclave

Pisces Co-kernel Architecture: http://www.prognosticlab.ora/pisces/

Provide tools for creating and managing enclaves, launching applications into enclaves

Leviathan Node Manager: http://www.prognosticlab.org/leviathan/

Provide mechanisms for cross-enclave application composition and synchronization

XEMEM Shared Memory: http://www.prognosticlab.org/xemem/

Recent results

Demonstrated Multi-OS/R approach provides excellent
performance isolation; better than native performance possible

Demonstrated drop in compatibility with both commodity and
Cray Linux environments

Impact

Application components with differing OS/R requirements can
be composed together efficiently within a compute node,
minimizing off-node data movement

Execution Time (s)
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In-situ Simulation + Analytics composition in

single Linux OS vs. Multiple Enclaves

Compatible with unmodified vendor provided OS/R environments, simplifies deployment




Multiphysics Simulation Composition Demo

Application
Composition with
Hobbes Enclaves

Composition through process-level
enclaves

Geoffroy Vallee (ORNL)

Thomas Naughton (ORNL)
Stuart Slattery (ORNL)

Damien Lebrun-Grandie (ORNL)
David Bernholdt (ORNL)
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NODE VIRTUALIZATION LAYER



Node Virtualization Layer Architecture

Application Analytics Simulation

= =
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Hobbes Runtime| % =

Leviathan Node Manager
Operating System| Vendor’s Linux OS Kitten Co-Kernel

(+ Hobbes Drivers) (Hobbes)

Compute Node Hardware




NVL Provides Excellent Inter-Enclave Isolation

Native Linux, Single Linux Image
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Co-kernel Architecture
nearly eliminates OS-
induced interference

When using single Linux
OS (top), competing
workload induces noise
on other processes,
even when they are
pinned to disjoint cores
and memory

Isolating processes in a

separate Kitten enclave
(bottom) eliminates this
interference




Excellent Isolation of NVL/Co-Kernel Arch Leads to Increased
Performance and Reduced Run-to-run Variability

Comparison of Mini-app/Benchmark Performance With and Without a
Competing Background Workload (Kernel Compile)
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Hobbes NVL Networking Support

" Problem
= Single network interface per compute node
= Moust be shared by multiple virtual machines / enclaves
= HPC NICs usually not designed to be easily virtualized

= Approach
= Rely on vendor-supplied driver stack running in host (boot) OS/R
= Rely on HPC NICs to use OS bypass for fast-path operations
= Use libhobbes.a infrastructure to proxy network setup commands
Proxy network-related system using XEMEM command queues
Map Kitten memory to Host Linux using XEMEM 1-to-1 mappings
= [ssues
= Some user-kernel interfaces rely heavily on IOCTL’s, must know semantics
= Some NICs require system calls in fast path, hurts proxied performance



Hobbes NVL Proxy Archltecture

: Enclave 0 : - Enclave 1 j
: - Client Process
Unmodified
vendor libraries
- Intercept device
Server Process | . - Function-Shipped device file accesses
) System Calls
XEMEM . " XEMEM
Command Q < - > Command Q
Pack/Unpack . Pack/Unpack
Syscall Args . Syscall Args
XEMEM Mappings : XEMEM Exports of
of Client . Registered Mem
xemem_create() Re-issued - ) xemem_create()
xemem_attach() device file xemem_attach()

accesses I




Hobbes NVL Cray XE6 Virtualization

= Gemini network > 6 years old, not fully OS-bypass
= Nonetheless, motivated to support since that is the HW available
= Also useful platform for developing NVL proxy architecture
= Results mostly as expected
= High overhead for non-0S bypass network operations (~30 us per call)
= Little overhead for OS-bypass network operations, likely due to NUMA issues

PingPong Results
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Hobbes XASM:
Cross-Enclave Asynchronous Shared Memory

= Mechanism for composition
Producer Consumer = Producer exports a memory snapshot
= Consumer attaches to the snapshot

physical Pinned
memory <—= = Xemem Snapshot

pool = Copy-on-Write used to allow both to
continue asynchronously

= \Works across enclave boundaries
" Linux to Linux

" Linux to Kitten
Kitten Linux = Kitten to Kitten
= Native—Native, Native—VM, VM—VM

= Built on top of Hobbes infrastructure

ROSS’16: A Cross-Enclave Composition Mechanism for Exascale System Software




SCHEDULING



Scheduling Research

= Focus: Resource allocation ~ ® Participating Institutions
= UNM (Bridges)

for HPC application = ORNL (Jones)

composition = GT (Schwan, Gavrilovska)
= Sandia (Ferreira, Widener)

" General Approach
: Recent Highlights

= Analyzing, quantifying, and

controlling application/analytics
composition interactions

Quantifying ability of modern OS
techniques to mitigate negative
interactions

Examining composition resource
allocation issues in modern
accelerator-based architectures

Multiple SC submissions on
research results

Demonstration of cooperative
CPU/GPU scheduling

Evaluation of Titan time
synchronization

Probabilistic modeling, empirical
simulation of application/
analytics interactions

Multiple students graduating
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Mondragon et al. CCGrid 2016. o
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Synchronization-Based Mitigation

Application slowdown (%)
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Loose synchronization
provided by MPI
collective algorithms
can mitigate analytics
interference

Levy et al. In submission.
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Current NTP clocks on
Titan provide only
rough basis for
synchronizing
distributed actions

Jones et al. In preparation.




Scheduling Analytics for Modern Hardware and
Runtimes

= Landrush: Coordinated scheduling and allocation of CPU and
GPU Resources

Co-schedule analytics and simulation on GPUs
Reduces performance impact of analytics by 80%
Goswami et al. CCGrid 2016, IPDRM 2016.

= Coordinated OS-Runtime Scheduling

Integration of OCR with Hobbes Node OS

Progress-based scheduling based on runtime-based task queues and
phases

Experimental evaluations with Cholesky, CoMD, FFT, Smith-
Watterman, etc.

“HINTS: a progress-based scheduler for co-located runtimes in HPC”,
In preparation.
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Global Information Bus

= Definition of use cases
= Draft document in preparation

= System boot, job launch, job monitoring, response to job termination,
system shutdown

= Useful for determining needed GIB publish/subscribe channels, which
data stored in GIB data store
= Continued work on proof of concept implementation
= |n support of API, use case definition and refinement
= BEACON (old version) for publish/subscribe
= Riak for distributed data store

= |ntegration with Hobbes Leviathan intra-node management and
control service



GIB Use Case: System Boot

Boot Storage Non-Storage Compute

" Proposed boot sequence for e

PowerOn

establishing GIB data store,

2
Read Global System Legend
Configuration BN = Boot Node
y

Ll Ll
SSN = Storage Service Node
y I I | SI‘T_ G"I‘ ?5";';9( NSSN = Non-Storage Service Node (e.g.,
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= Non-GIB System Activity

Define and Subscribe

publish/subscribe channel, - - s
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v

and resource management Sam =
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Filesystem Services
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System Health
Channel
Define and Subscribe
o GIB Scheduler Publish “Available” on

\ Channel Scheduler Channel

Steady State

= See poster for more detail

Steady State

Steady State

Proposed boot procedure highlighting GIB-related activities




GIB Use Case: Job Management

= GIBinvolved in:
= Job launch
= Job monitoring
= Response to job completion
(graceful or otherwise)
= Assumptions made about
job’s use of separate
enclaves and Leviathan’s
ability to detect and notify
scheduler daemon on job
enclave termination/failure

= See poster for more detail

Proposed Job launch/health monitor/termination detection

hiﬁhliﬁhﬁng GIB-related activities
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Motivation

" Energy efficiency is a first order design concern

Hardware <-> System Software <-> Applications

= Long history in HPC using DVFS to reduce energy usage
without performance loss BUT ...

= All techniques are quantitative (predict performance)

= Recent applications are dynamic, unpredictable
= Changes in programming models
* Changes in hardware

29




Variability is caused by contended resources

fraction cpu-intensive code (%)

Our Qualitative Approach

Has recognizable signature
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Predicting DVFS Potential
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32

DVFS Control Algorithm

Programming model/language independent
= Context sensitive
= Online and offline/trace

Partition execution into regions (barriers)

Learn by choosing one target GLOBAL frequency, then
vote

Region clustering to hide DVFS control latency
= Candidates + short + bridge




Some NWChem Results

Predicting Clustering Variability works
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DEBUGGING



Enhanced Debugger for HPX-5 Runtime System

= Goal

Create new GDB commands that enable developers to dynamically inspect and

modify HPX-5 constructs.

= Objectives
= Access and Modify data in GAS.
hpx print <hpx_address>

= Display and Track currently existing Parcels.
info parcels

= |nvestigate the status of LCOs.

info lco <hpx_address>

=  Status

Finished M
Finished M

GAS

Parcel
S

LCOs |In []
Progress

Breakpoint 1, _stencil_action (args=<of
179 hpx_addr_t new_grid_addr = hpg
(gdb) p neighbors

$8 = {131952, 131440, 131688, 131704}
(gdb) hpx print 131440 double

$9 = 0.25

(gdb) B

Scheduler Parcels:

Total number of worker threads: 1

Worker @ info:

Current parcel address: 0x7f22e575a800
Current action: heat.c:_stencil

Parcel size: 16

Buffer address: 0x7f22e575a850 ''\002"

Parcels in Queue 0

Parcel Address Action

0x7f22e531 200 heat.c:_spawn_stencil
0x7f22e53ff180 heat.c:_spawn_stencil
0x7f22e53ff100 heat.c:_spawn_stencil
0x7f22e53f 080 heat.c:_spawn_stencil
0x7122e53ff000 heat.c:_spawn_stencil
0x7f22ef514180 heat.c:_spawn_stencil
0x7f22ef514100 heat.c:_spawn_stencil




Debugging Support in Hobbes

= Low-level debugging components
= Support of ptrace system call in Kitten
= |ntra-enclave debugger proxy
= Conventional external debugger under user control

= Compiler techniques
=  Source-to-source transformation

= Based on the idea of Bertrand Meyer’s design by contract (preconditions,
postconditions, and invariants) and specialized error handlers

= Uses #pragma debug directives in C/C++ (or specially formatted comments in Fortran)
to inject the user-defined conditions

" Status | Linux ptrace integration with LWK | In Progress

Process control using external gdb | To do

#pragma debug construct syntax Finished

0RO 4O

GCC S2S translation plugin In Progress
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Visualizing the OS
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Operating Systems

Will OSs in 2025 still resemble the UNIX-like consensus of foday,
or will a very different design achieve widespread adoption?

eventeen years ago, six renowned tec
gists attempted to predict the future of OSs
for an article in the January 1999 issue of IEEE
Cor.rune-x(y.' With the benefit of hindsight,
the results were decidedly mixed. These six experts
correctly predicted the emergence of scale-out a:
orm memory access [NUMA) perfor-
mance issues, and the increasing importance of OS
security. But they failed to predict the dominance of
Linux and open source software, the decline of propri-
etary UNIX variants, and the success of vertically
grated Mac OS X and i0S.
‘The reasons to believe that OS design won't change
much going forward are well known and rehearsed:
for backward bilis he UNIX
model's historical resilience and adaptal ? and so
on. “Ifit roke, don't fix it
However, we argue that OSs will change radically.
Our motivation for this argument s two-fold. The first
has been called the “[nnovator's Dil after the
book of the same name:” a variety of interests, both com-
mercial and open source, have invested substantially in
current OS structures and view disruption with suspi-

tectures, nonu

te-

clon. We seek to counterbalance this view. The second is

more technical: by following the argument that the 0S
change, we can identify the most promising paths
r OS research to follow—toward either a radically dif-
ferent model or the evolution of existing systems. In
research, it's often better to overshoot (and then figure
out what worked| than to undershoot.

Current trends in both computer hardware and appli-
cation software strongly suggest that OSs will need to be
designed differently in the future. Whether this means
that Linux, Windows, and the like will be replaced by
something else or simply evolve rapidly will be deter-
mined by a combination of various technical, business,
and social factors beyond the control of OS technolo-
gists and researchers. Similarly, the change might come
from incumbent vendors and open source communities,
or from players in 1 s that
aren'tsatisfied by existing designs.

Ultimately, though, things are going to have to
change.

w markets with requiremen

HARDWARE TRENDS
Hardware is changing at the levels of in
cores, boards, and complete computer systems, with
deep implications for OS design.

ividualdevices,




Opportunities for a New OS

loT

Sensors,
industrial,
etc.

New apps and tools

Power

APIs

Real-time

Latency I
Generality [
Size

Cloud + NFV,
exascale,
etc.

New apps and tools

Scale (cores, memory, persistency)
* APIs
| Synchronicity (1/noise)
SCO Xenix / Bandwidth
/" Responsiveness (1/latency)

Innovation Legacy Innovation




Hobbes Demos

= Hobbes Support for Creating and Managing Enclaves

= Demonstration of a Multiphysics Simulation Composition
Based on Hobbes Enclave and Data Transfer Toolkit

= Parallel Programming Debugging in Runtime System
Environments

= Kitten on KNL Running LULESH on HPX-5



http://xstack.sandia.gov/hobbes



