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Background

3 OS/R projects funded under ExaOSR:
Argo (Pl: Pete Beckman, Chief Scientist: Marc Snir)

Hobbes (PI: Ron Brightwell, Chief Scientist: Barney
Maccabe)

X-ARCC (PI: Stefen Hofmeyer, Chief Scientist: John
Kubiatowicz)

Projects share a common view of Exascale OS and
runtime structure

They work jointly on some of the components
Explore different implementations for others
Have complementary foci

Talk presents common vision and status of projects



Exascale Challenges

- Scale: billions of threads

- Heterogeneity:
- Cores: throughput and latency optimized cores & accelerators

- Memory hierarchies, including SRAM, nearby and remote DRAM,
NVRAM; heavy NUMA. possbly nonchoerent

- Energy: power as a first-class resource
- Resilience: frequent and possibly silent HW errors

- Variability: coping with continuous change and variable
execution speed

- New workloads: Workflows, simulation+analysis,
multicomponent applications,

- Complexity!



Current limitations

Resource management is machine-global and static

No management of power or network bandwidth and only
limited management of |/O resources

No flexibility in error/fault management
No constructs for coordinating workflows

Unproven (at best) capabilities for managing node
challenges: O(1000) threads, heterogeneity of cores, or
complex memory hierarchies

Overly simplistic definitions and mechanisms for
supporting isolation



Design Principles

Exploit hierarchy to enable scalability
Manage resources in runtime, rather than OS
Runtime can be application specific

Support for adaptive resource management:
hierarchical control with feedback

Performance isolation (QOS) to enhance resource
utilization (and avoid over provisioning)

Fault isolation to support local, independent recovery

Customization to support variety in software and
hardware



Future Node
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ARCHITECTURE

Key Constructs



Key Constructs
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Container

Resources at a node are partitioned into one or more

containers. Each container is dedicated to one parallel
application

Resources allocated to a container are managed by the
container runtime (possibly different on each container)

Additional core(s) provide general OS services and
control the containers — containers are free of OS noise
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Containers -- Issues

- How to implement:
- Linux container (using OS and architecture support)
- Virtual machine
- Fused OS
- Some combination

- Metrics
- Performance isolation
- Fault containment
- Reconfiguration overhead
- Steady-state overhead
- Ease of customization
- Mechanisms for communication across containers
- Ease of implementation and support
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Container Run-Time

- Specialized “machine looking” runtime for compute
containers
- Programming model specific runtimes implemented atop core
runtime
- Goals:
- Efficient support for task model (light-weight threads and tasks)
- Reduced scheduling overhead
- Improved user-space event handling
- Customization — customized schedulers
- Runtime memory management (allocation, copying, caching)
- Runtime power management



Container Run-Time (1)

Execution stream
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Global OS & Enclave OS/R

- Global OS Allocates (dynamically) resources to enclaves
- Nodes, power, |/O services, switch bandwidth (?)
- Allocation can be hierarchical

- Enclave OS/R configures the enclave resources and
maps logical entities to physical resources

- Composed applications may involve multiple enclaves

- Global OS controls enclave connectivity and time-space
scheduling of enclaves

- APls are provided for parallel connectors
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Generic Resource Manager

Feedback loop for each
managed resource

sensors: application progress
and HW monitoring

Supervisor ensures
coordinated resource
management

higher-level specification of
constraints, goals and
information on execution
software

Use of ML to adjust feedback
functions

constraints, objectives, info
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Resilience

OS services for application resilience

hardened data structures, hardened/persistent storage,
hardened execution

Hierarchical error-nandling: Error reported to lowest level
(container or enclave if node failed). Error is handled at
that level or raised to next level of the hierarchy

Managing levels of confidence
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Global Information Bus

- Franck Cappello, Allen Malony (Argo)
- Karsten Schwan, Philip C. Roth (Hobbes)

- Problem: Moving information from sensors to controllers and
from controllers to actuators

- Physical structure of system many not match logical structure of
containers and enclaves.

- In-band vs. out-of-band
- Non-coherent information
- Shelf-life constraints

- Solution: Global publish-subscribe system
- Configured to ensure locality of communication and robustness
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Global Information Bus (cont.)
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Current Candidate Use Cases

- CTH+Paraview/Catalyst “in transit” analysis
- From Kevin Pedretti, SNL

- DNS+LES combustion high-/low-fidelity verification

- XGC-1+XGC-a coupled fusion high-/low-fidelity modeling
- From Hasan Abbasi, ORNL

- CASL VERA coupled multiphysics modeling
- From John Turner via Barney Maccabe, ORNL

- SACLA and K Computer data analysis
- From Atsushi Hori, RIKEN, via Franck Cappello, ANL (BDEC’14)

- HACC simulation / analysis /visualization workflow
- From Salman Habib via Franck Cappello, ANL (BDEC’14)
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The Argo Team:

* ANL: Pete Beckman, Marc Snir, Pavan Balaji, Rinku Gupta, Kamil
Iskra, Franck Cappello, Rajeev Thakur, Kazutomo Yoshii

* BU: Jonathan Appavoo, Orran Krieger

* LLNL: Maya Gokhale, Edgar Leon, Barry Rountree, Martin Schulz,
Brian Van Essen

* PNNL: Sriram Krishnamoorthy, Roberto Gioiosa

 UC: Henry Hoffmann

* UIUC: Laxmikant Kale, Eric Bohm, Ramprasad Venkataraman
 UO: Allen Malony, Sameer Shende, Kevin Huck

 UTK: Jack Dongarra, George Bosilca, Thomas Herault

* Industry Advisory Committee:
— Michael Schulte (AMD), Eric Van Hensbergen (ARM), Larry Kaplan (CRAY),
— Kyung Ryu (IBM), Bob Wisniewski (Intel), Don Becker (NVIDIA)
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Project Goals

= Deliver prototype OS/R environment for R&D in extreme-
scale scientific computing

" Focus on application composition as a fundamental driver

= Develop necessary OS/R interfaces and system services required to
support resource isolation and sharing

= Support complex simulation and analysis workflows
= Provide a lightweight OS/R environment with flexibility to
build custom runtimes
= Compose applications from a collection of enclaves
= Leverage Kitten lightweight kernel and Palacios lightweight

virtual machine monitor

= Enable high-risk high-impact research in virtualization, energy/power,
scheduling, and resilience
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Exploring Adaptive Resource
Centric Computing for Exascale with
Tessellation
(X-ARCC)

Steven Hofmeyr John Kubiatowicz
LBNL UC Berkeley
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Key Features of ARCC

Need to reason predictably about resources:

e Cells: lightweight containers with user-level access to
guaranteed resources (cores, memory, bw, etc.)

e Services in cells provide QoS-guaranteed access to
hardware, e.g. network, block device

Ensure maximum utilization:

e Customizable runtimes with minimal OS interference:
user-level scheduling & memory management, etc.

e Space-time partitioning for maximum flexibility of
resource allocation

* Gang-scheduling for performance predictability
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