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Critical Technology Evaluations 
Technology Description Status 

Parallel	
  Language Evaluation	
  of	
  PIL	
  targeting	
  Shared	
  Memory	
  SCALE	
  using	
  NAS	
  Parallel	
  Benchmarks	
   Evaluating 

Parallel	
  Language Evaluation	
  of	
  PIL	
  targeting	
  Distributed	
  Memory	
  SCALE	
  using	
  NAS	
  Parallel	
  
Benchmarks	
   

Evaluating 

Compiler Design	
   and	
   implementation	
   of	
   an	
   Exascale-­‐friendly	
   codelet	
   code	
   generation	
  
scheme 

Evaluating 

Compiler Virtual	
  DMA	
  runtime	
  to	
  enhance	
  virtual	
  scratchpad	
  optimization In	
  process 

Applications Provided	
  main	
  driver	
  and	
  input	
  information	
  for	
  TCE	
  benchmark Done 

Applications Designed	
  CnC	
  flow	
  for	
  LULESH Done 

RTS/Compression Comparing	
  the	
  effects	
  of	
  compression	
  algorithms	
  on	
  dense	
  data	
  structures	
  for	
  a	
  
Matrix	
  Vector	
  multiply	
  application	
  using	
  the	
  Floating	
  Point	
  Compression	
  
Algorithm	
  by	
  Burtscher	
  and	
  Ratanaworabhan	
  using	
  the	
  SWARM	
  framework 

Evaluating 

RTS/Compression Comparing	
   the	
   effects	
   of	
   compression	
   formats	
   on	
   sparse	
   data	
   structures	
   for	
   a	
  
completed	
  Cholesky	
  factorization	
  application	
  using	
  an	
  extended*	
  version	
  of	
  Block	
  
Sparse	
  Row	
  Format	
  using	
  the	
  SWARM	
  framework 

Evaluating 

RTS/Compression Development	
   of	
   the	
   first	
   instance	
  of	
   the	
  Architected	
  Composite	
  Data	
  RTS	
   Type	
  
Qualifier	
  concept	
  [reciprocal	
  formulation	
  to	
  RPDT]	
  for	
  SWARM 

Evaluating 

RTS/Compression Writing	
  paper	
  for	
  ICS'14	
  (collaboration	
  between	
  PNNL,	
  UDEL	
  &	
  Reservoir	
  Labs) In	
  process 
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Summaries of Quarterly Work (Q5) 

ETI Work 

TCE 
ETI has adapted the Tensor Contraction Engine code generator, provided by PNNL, to 
generate simple C code.  ETI has also built a standalone C program around it, so that the 
generated code can be evaluated, modified and optimized directly, outside of nwchem.  This 
test framework supports the minimal set of nwchem API functions and data structures, to 
allow the code generated by TCE to function.  It also compares the output to the output of 
nwchem itself, to ensure that the operation was performed successfully. 
 
This test framework successfully runs one iteration of cc2 on an Ozone molecule.  This 
completes in 0.3 seconds.  ETI is now working on the ccsd operations in a Benzene molecule.  
This requires supporting additional data structures from nwchem, but will allow much larger 
problem sizes to be executed, which will allow us to evaluate scaling strategies much more 
clearly. 

LULESH 
LULESH demonstrates a workload imbalance that is consistent across iterations.  In LULESH, 
this workload imbalance is represented as a differing loop count for certain regions.  Regions 
with high loop factors will always have more work to do than other regions.  In some cases, 
the loop count increases the workload by more than a factor of 10. 
 
It may be possible to re-balance the workload, by splitting up the volume of (simulated) space 
differently.  Our next step is to produce a design and a set of code modifications to allow this. 
The goal will be to repartition the space such that the computational load is equal while 
minimizing the amount of data transmitted between compute nodes (i.e. minimizing the 
surface area between the partitions). 
 

Reservoir work 
Reservoir Labs has focused on two performance-related aspect of SWARM code generation. 
First, we have implemented an Exascale-ready codelet code generation scheme in SWARM, 
which is optimal in terms of sequential scheduling overhead and space overhead.  
This work is presented in the “Exascale code generation” section below.  
Also, we have implemented a high-performance cache-bypassing memory copy library to 
improve the performance of codes generated by R-Stream using our virtual scratchpad 
memory optimization. This library basically provides a virtual DMA abstraction, practically 
removing cache interference issues when executing parallel programs using virtual 
scratchpads. This work is presented in the “Virtual DMA” section below.  

UIUC Work 
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UIUC has implemented six of the NAS Parallel Benchmarks using PIL HTA library for 
performance evaluation. The code is written in C language and includes HTA API calls. Since 
parallel data distribution and operations can be expressed through combinations of HTA 
operations, the programmers can program in a higher-level manner instead of having to 
directly interact with PIL.  
 
The benchmarks can now be executed on OpenMP and Shared Memory SCALE, and the 
preliminary performance results were retrieved from a workstation with many cores. The work 
to extend PIL to support backend code generation for the distributed memory environment is 
still ongoing. Since the programming interface of PIL is different for the distributed memory 
environment, the HTA-to-PIL interface has to change as well. However, HTA APIs remain 
unchanged to the user level applications, thus these changes should be transparent to the 
user. 

PNNL Work 
 
PNNL provided the Tensor Contraction Engine (TCE) driver and input decks to the project. It 
also designed a LULESH CnC flow. Using SWARM as a RTS substrate, we are studying the 
effects of compressed formats and algorithms on standard kernels. 
 
In particular, we are evaluating the effects of compression algorithms on dense data 
structures for a Matrix Vector multiply application using the Floating Point Compression 
Algorithm [1] by Burtscher and Ratanaworabhan within the SWARM framework. For sparse 
data structures, we are examining representations for a completed Cholesky factorization 
application using an extended* version of Block Sparse Row (BSR) Format. The extensions 
we developed take into account fill-ins and operator invariants. These experiments are 
complemented by an overarching framework which is a bottom up (runtime aware) data type 
qualification system for the RTS.  
 
[1]. Burtscher, M.; Ratanaworabhan, P., "FPC: A High-Speed Compressor for Double-
Precision Floating-Point Data," Computers, IEEE Transactions on , vol.58, no.1, pp.18,31, 
Jan. 2009  
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Topic Detail: 

Reservoir: Exascale code generation 
As introduced in the previous quarterly report, we have developed a new code generation 
scheme for codelet codes with the SWARM target that dramatically improves sequential 
scheduling overhead and spatial overhead of inter-codelet dependences.  
Here is a summary of its governing principles: 
- For every codelet instance, there exists a function that returns the number of codelet 
instances it depends upon (its predecessor in the codelet graph).  
- A codelet can be initialized either by the main codelet (sequentially so) or by the one of its  
predecessor that arrives at completion first (in parallel). 
- A codelet gets initialized using a counted dependence. A counted dependence associates 
an integer counter with a codelet and its input parameters. When the counter reaches zero, 
the codelet is scheduled. Every time a codelet completes, it decrements the counters 
associated with its successors.  

Space overhead 
The number of synchronization objects (and hence the space overhead associated with them) 
is bounded by the number of codelet instances (let us call this number n): one counted 
dependence per codelet. This a significant improvement over the O(n2) bound for frameworks 
that represent one object per dependence, which includes our previous SWARM backend 
version.  
 
Two things should be noted about this new O(n) bound. First, it can be brought down to less 
than n by using a sparse representation of the current counted dependences, such as a hash 
map. Also, we have assessed the practical impact of an O(n) space overhead versus O(n2)at 
Gigascale by forcing the sizes of the tasks formed by R-Stream to be very small (and hence 
numerous). In some examples, a few dozen million codelets were formed. The space required 
to store a representation of all the dependences (even though they were not all stored at the 
same time) was enough to overflow the linux memory, rendering the programs unexecutable. 
It is clear that systems with O(n2) space overhead are not viable in an Exascale context 
where memory movements dominate power consumption and the number of codelets per 
program will be even higher.  

Sequential scheduling overhead 
One of the advantages of our previous SWARM backend over other systems in the literature1 
is that instead of representing the program as an explicit graph of codelets, we produce an 
implicit rendering of the graph in which codelets acquire and validate dependences in the 
form of tags2. As a result, our preivous SWARM backend improved upon the O(n2)sequential 
scheduling overhead required for the main codelet to set up an explicit graph representation, 
down to O(n) since with the implicit graph representation, the main codelet only requires to 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 M. Baskaran, B, Vydynathan, U. Bondhugula, J. Ramanujam, A. Rountev, P. Sadayappan, “Compiler-assisted 
dynamic scheduling for effective parallelization of loop nests on multicore processors.” In Proc. of PPoPP 2009, 
pp. 219-228.  
2 Using SWARM’s TagTables synchronization mechanism.  
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perform one operation (scheduling) for each codelet that needs to run (each codelet knows 
about its own dependences).  
 
In our new Exascale-friendly SWARM backend, thanks to SWARM’s counted dependence 
mechanism, a codelet is scheduled only when its predecessors have completed. Hence, the 
overhead on the scheduler is reduced since the scheduler is not burdened with codelets 
scheduled before they are ready to execute. However, without particular optimizations, and to 
ensure that all codelets are eventually initialized, the main codelet still runs a loop that 
initializes all the codelets if they haven’t been so. So we still have an O(n) sequential 
scheduling cost, even though in practice the number of non-ready codelets scheduled is 
reduced. 
 
Notice that only the codelets that don’t have predecessors need to be initialized by the main 
thread. We implemented an optimization in R-Stream that uses this very observation to 
remove unnecessary initializations made by the main codelet, reducing the cost of sequential 
scheduling overhead to O(m) , where m  is the number of codelets that don’t have 
predecessors. In most stencil computations, as in the two-dimensional Jacobi example code 
presented below, m = 1 . Interestingly, the worst case here is embarrassingly parallel 
programs, since none of their codelets has predecessors. However, the initialization of tasks 
without predecessors can be trivially parallelized as well, either per dimension (bringing down 
the overhead toO( nd )) or by hierarchical decomposition (bringing the overhead to O(log(n))).  
 
To illustrate this new code generation scheme and its optimization, we chose a simple Jacobi-
style nine-points stencil kernel, represented in Figure 1. 
 

 
Figure 1. Original Jacobi stencil code.  
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R-Stream decomposed this code into codelets, computed inter-codelet dependences and 
generated the SWARM-based parallel code. Throughout the codes below, you will notice that 
some function calls are actually made to a thin runtime layer, which comes with R-Stream, 
and that enables a more concise and readable code generation. Calls to these functions are 
prefixed with “rsw” (for R-Stream - SWARM).  
 
The code generated3 for the codelets performing the stencil operations is represented in 
Figure 2. It is made of three parts: the unpacking of the input arguments (from the SWARM 
“THIS” pointer), the computation itself, and a loop that decrements the counted dependences 
of the particular codelet instance’s successors. The “rswAutoDec” function name is a 
reminder that not only is the counted dependence decremented, but it is also automatically 
initialized if it hasn’t been so yet.  
 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
3 We selected R-Stream options that give a relatively readable code. Most optimizations that reduce code 
readability, such as for instance global code motion, were turned off. Hence the appearance of common sub-
expressions in the code.  
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Figure 2. Generated stencil SWARM codelet 
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The main codelet code is represented as generated by R-Stream without the sequential 
scheduling overhead optimization presented here in Figure 3.  

 

 
Figure 3. Unoptimized main codelet  

 
 
A two-dimensional (i,j) loop nest is making calls to “rswPreSchedule”, which initializes a 
counted dependence for each codelet instance if it wasn’t initialized yet by concurrent calls to 
rswAutoDec. In this example, it happens that only one codelet does not have a predecessor. 
We can confirm this by looking at the optimized version on Figure 4, in which only one call is 
made to rswPreSchedule by the main codelet. Figure 4 also represents the new code for the 
original “jac” function, as well as a helper function, generated by R-Stream, which packs a 
codelet’s input data into a data structure (which becomes the “THIS” pointer in the destination 
codelet).  
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Figure 4. Optimized main codelet, packing function, new “jac” function.  

A note on hierarchical mapping 
As part of our previous X-Stack research, we explored the use of hierachical mapping to 
reduce both space and sequential scheduling overheads. The sequential scheduling 
overhead is brought down to O(log(n)) , and the space overhead associated with 
dependences is down to O(nt), where t is the number of codelets in the penultimate level of 
recursion. Interestingly enough, while these overheads are acceptable for Exascale, they are 
not as low as with our new SWARM backend presented here. Additionally, our new SWARM 
backend doesn’t suffer from the extra synchronizations that are idiosyncratic to hierarchical 
task decomposition.  

Reservoir: Virtual DMA runtime for x86 

Virtual scratchpad optimization 
Cache memories provide additional performance potential by keeping data used by the 
processor in faster, closer-to-the processor memories automatically. As opposed to explicitly-
managed memories such as scratchpads, the additional performance potential comes for free 
in terms of programming burden, since cache operations are transparent to the application 
programmer.  
 
Unfortunately, this transparency comes with some amount of inflexibility, which makes optimal 
use of these faster memories tricky. In particular, knowing in advance whether loading data X 
into the cache will trigger the eviction of data Y from the cache is difficult. It is however 
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important to know this, since the next use of Y will require a new time- and energy-costly load 
of Y into cache (a.k.a. a cache miss).  
 
In the case of loop codes, knowing how many cache misses will occur given a particular 
schedule of the loop iterations requires counting the number of solutions to so-called cache 
miss equations4. The solution to cache miss equations is usually a complex expression, and 
the computations involved in obtaining the number of such solutions are not tractable enough. 
Hence compilers such as R-Stream rely on heuristics and approximate computations to 
optimize to cache-based architectures. Global data layout optimizations are also used to pack 
data used at once into a fewer number of cache lines. Data layout optimizations are costly as 
they introduce extra data movement (and hence extra cache misses) and additional 
synchronizations in the program.  
By opposition, since the programmer has full control over data movement to and from 
scratchpad memories, these are easier to optimize for. Additionally, moving data to a 
scratchpad offers an opportunity for local data layout optimization.  
 
Since the days of the STI Cell processor, R-Stream has been capable of generating optimized 
code for scratchpad memories. The gist of R-Stream’s virtual scratchpad optimization is to get 
closer to the type of control of data movement that we have on scratchpad memories, but on 
cache architectures. To do so, roughly, we treat the cache as a scratchpad. This process is 
illustrated in Figure 5. Before a codelet executes, it copies its input data into a buffer that is as 
small as (or smaller than) the cache. The codelet executes on the copy of its input data that 
lies in the “local” buffer (which is presumably cached), and writes back its output data from the 
buffer when done.  
 

 
Figure 5. Virtual Scratchpad optimization 

 
While we have experienced significant gains using this technique with codes that reuse data 
enough, we believe that the current implementation suffers from unnecessary cache misses 
during the copy-in and copy-out phases. Indeed, the data copied in is only accessed once 
and won’t be accessed during the computation (which uses its “local” copy). Idem for the data 
written to during the copy-out. Hence the cache misses entailed by these copy-in and copy-

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
4S. Gosh, M. Martonosi and S. Malik, “Cache Miss Equations: A Framework for Analyzing and Tuning Memory 
Behavior.” ACM Transactions on Programming Languages and Systems, Vol. 21, No. 4, July 1999. 
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out operations introduce unnecessary delays, and additionally evict local buffer data from the 
cache, making for more cache misses during codelet execution.  
 
Our objective is to remedy this problem by performing the copies using efficient cache-bypass 
operations. Such operations, non-temporal vector loads and stores, were introduced in x86 
architectures since SSE 4.1. More efficient (but less portable) versions of them have 
appeared with the AVX/AVX2 instruction sets. In order to seamlessly enable the local layout 
transformation opportunities that come with scratchpad memories, the API for these copy 
operations is that of a standard two-dimensional DMA (Direct Memory Access) engine. We 
have assembled a minimal necessary set of operations into a runtime component that is part 
of the R-Stream runtime layer.  

Virtual DMA runtime 
The runtime API is made of three functions: asynchronous two-dimensional get and put and a 
wait function. Tags represent groups of asynchronous transfers that can be waited upon using 
the wait function. The functions’ signatures are as follows: 
 
void  x86_dma_get(void * src, void * dst, uint64_t bytes, uint64_t src_stride, uint64_t dst_stride, uint64_t count, int tag); 
 
void x86_dma_put(void * src, void * dst, uint64_t bytes, uint64_t src_stride, uint64_t dst_stride, uint64_t count, int tag); 
 
void x86_dma_wait(int tag); 
 
A ‘get’ is used to move data from DRAM to the virtual scratchpad and a ‘put’ is used to move 
data from the virtual scratchpad to DRAM.  
 
The implementation of these functions is optimized to the SIMD nature of the underlying data 
transfer operations, maximizing the amount of aligned, vector transfers per function call. 
Because of the SIMD nature of the data transfer operations, calls representing aligned, block 
operations on the DRAM end (as opposed to the virtual scratchpad end) are more efficient 
than unaligned and strided ones.  
 
We expect that several extra optimizations will improve the virtual scratchpad technique 
further. We will present these in future quarterly reports.  
 
UIUC: NAS Parallel Benchmark Implementation 
 
To evaluate the performance more realistic and complicated applications, six of the NAS 
Parallel Benchmarks (NPB) have been implemented in PIL using HTA library. We adapted 
from the serial C and OpenMP C implementations of SNU-NPB-1.0.3 developed at the Center 
for Manycore Programming of Seoul National University. The supported benchmarks are EP, 
IS, FT, LU, CG and MG. Their sizes vary from hundreds to a few thousands of lines. The 
applications are implemented in C language and they manage data and perform parallel 
operation by calling HTA library APIs.  
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By using PIL compiler, it is possible to generate code for different backend target parallel 
programming languages without the need to change the application level code. Two different 
PIL backends for OpenMP and ETI SCALE (shared memory) are used in the performance 
comparison with a hand-coded OpenMP NPB implementation. Performance experiments are 
conducted on a multi-core shared memory machine with Intel Xeon E7-4860 CPU using up to 
64 cores. The speedup is calculated using the serial C implementation execution time as the 
baseline. 
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In general, the PIL-to-OpenMP version can achieve similar performance results with hand-
coded OpenMP version (except for CG and LU, which use a different parallel algorithms), if 
the HTA operations are implemented to exploit the advantage of having global memory 
address space. For example, when a transposition or a circular shift is performed, swap the 
pointers instead of actually copying data. However, this approach is not general enough for 
the application to work on the distributed memory environments. We plan to make necessary 
modifications at the HTA library level and save the users from having to program for different 
memory address space. 
 
The PIL-to-SCALE (shared memory) version shows worse performance results than the PIL-
to-OpenMP version. From the following figure, we can see the speedup ratios of both 
versions compared with hand-coded OpenMP.  
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The lines with triangular markers are the PIL-to-SCALE results showing around 0.4~0.7 of the 
speedup of the hand-coded OpenMP version in most cases except for CG and LU. And we 
also found the performance scales badly when we increase the number of threads from 2 to 4. 
Further analysis is required to determine where the performance overhead comes from. It is 
possible that the code generation scheme in PIL-to-SCALE backend still requires optimization.  
 
In the next quarter, we plan to cooperate with  ETI team closely to figure out how to fine-tune 
and optimize the PIL-to-SCALE compiler backend, while also working on targeting distributed 
memory SCALE. Since the programming model for the distributed memory environment is 
significantly different from the shared memory environment, efforts are expected in: (1) 
changing the PIL compilation, and (2) HTA library implementation to hide the details of 
message passing from the application level. 


