
Motivation

SLEEC: Semantics-rich Libraries for Effective
Exascale Communication

Team
Purdue University
! Milind Kulkarni, Arun Prakash, Vijay Pai
! and Sam Midkiff
Sandia National Labs
! Michael Parks

Goals and Principles
We are building a generic, extensible compiler
infrastructure that incorporates semantic
information from domain-specific libraries to enable
transformations that leverage domain-specific
properties of library methods. Rather than building
domain-specific compilers for each domain, our
extensible compiler becomes a domain specific
compiler for a domain when paired with domain-
specific libraries.
The SLEEC vision is based around three key
principles:
■Domain-specific information should be

conveyed by libraries. Domain semantics are
best-understood by the scientists writing the
domain libraries, so any semantic information
should be provided as part of a library's
specification or interface.
■Compilers should be domain agnostic.

Rather than building ad hoc compiler technology
for each domain, the compiler should transform
programs in that domain without having been
explicitly specialized for that domain.
■Compilers should optimize for multiple

objectives. A compiler should be parameterized
by the optimization target (performance, energy-
efficiency, communication-minimization, etc.).

Unlike many domain-specific approaches, one of
our primary goals is to ensure that our compiler can
optimize across domains. This requires that the
compiler understand transformations and
optimizations in a domain-oblivious manner

Modern scientific applications are built out of
numerous libraries, spanning a variety of domains.
Finding the most efficient way to use and compose
the abstractions provided by libraries to solve a
problem is a difficult, tedious task. Traditional
compilers do not understand library semantics and
cannot optimize across abstraction boundaries.
Domain-specific approaches mitigate these issues
by incorporating semantic knowledge about
domains into languages, compilers and runtimes.
This allows properties of domain abstractions to be
leveraged when optimizing an application.
However, most domain-specific approaches are too
specific: each domain has its own languages and
compilers, its own representations of abstractions
and its own optimization strategies. This makes it
difficult to target applications that span multiple
domains, including emerging computational science
applications such multi-scale, multi-physics
simulations.
What is needed are approaches that allow generic
compilers and runtime systems to incorporate
domain knowledge without being specialized to a
single domain.

To demonstrate the utility of our
infrastructure, we are targeting !

two specific application classes, both of which feature complex domains with rich
semantics. First, we are examining loosely-coupled, multi-scale computational
mechanics, which involves multiple temporal- and spatial-scales and multiple
solution and coupling strategies, the various combinations of which lead to
hundreds of thousands of possible solutions. We will use the semantics of
domain decomposition, solving and coupling to find efficient solutions. Second, we
are studying the peridynamics code Peridigm, which uses peridynamic methods to
simulate large-scale physical systems (such as the fragmenting cylinder to the right).
This application is built on the Trilinos components, a highly-tuned set of libraries. We !
will use the semantic and locality properties of these libraries in our optimization.

Challenge applications

We will develop a unified intermediate representation
(IR) that can capture high level abstractions provided

by domain libraries. The IR will represent programs built with domain libraries as expression trees that
capture the dataflow of a program, with library methods as operations in those trees.
Domain libraries will provide
translations to and from our
common IR; annotations that
describe high level properties
of operations that drive
transformations (e.g.,
commutativity); and cost
models that capture various
cost metrics for library
methods.
Our generic compiler can
then use the annotations to
transform a source program,
generating a space of
equivalent programs. The
compiler then uses the cost models to search the space of equivalent programs, finding a low-cost
implementation according to a user-provided objective (e.g., to minimize communication costs).
Because all libraries use a common annotation language, a program using multiple distinct libraries can be
described in the unified representation of our IR. Hence, our compiler can apply transformations that span
multiple libraries or even domains.

Project overview and approach

Impact
SLEEC is expected to impact exascale
programming along a number of dimensions:
■Programmability. SLEEC allows programmers

to use high level domain libraries while still
allowing compiler-driven optimization, letting
programmers focus on correctness instead of
performance.
■Performance portability: SLEEC can enable

library selection, or replacing certain domain
constructs with variants that perform better on
different architectures.
■Scalability. SLEEC’s transformations allow code

to be transformed to take advantage of
accelerators, or to enhance locality and
parallelism.
■Energy efficiency. SLEEC’s cost models can

capture energy efficiency, letting the compiler’s
parameterized optimization strategy search for
energy-efficient, rather than high-performance,
implementations
■Resilience. SLEEC’s cost models can capture

fault-tolerance properties, letting the compiler
automatically select more resilient library
implementations only when necessary.

Research challenges
■How should the annotation language look? It

should be rich enough to capture important
domain properties, but simple enough for
domain experts to use.
■How should the compiler perform its

optimization? We require heuristics and search
strategies to quickly prune a large search space
of program variants and find a low-cost
implementation.
■How can we deal with multi-domain programs?

We must be able to perform optimizations
across domains. How do the IR and annotation
languages need to be modified to accommodate
cross-domain transformations?
■How can we deal with incomplete information?

The infrastructure must gracefully degrade even
if only incomplete annotations are provided. Can
we infer missing annotations?

http://engineering.purdue.edu/~milind/sleec

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department
of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

http://www.ece.purdue.edu/~milind/sleec
http://www.ece.purdue.edu/~milind/sleec

