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Goals and Principles
We are building a generic, extensible compiler 
infrastructure that incorporates semantic 
information from domain-specific libraries to enable 
transformations that leverage domain-specific 
properties of library methods. Rather than building 
domain-specific compilers for each domain, our 
extensible compiler becomes a domain specific 
compiler for a domain when paired with domain-
specific libraries.
The SLEEC vision is based around three key 
principles:
■Domain-specific information should be 

conveyed by libraries. Domain semantics are 
best-understood by the scientists writing the 
domain libraries, so any semantic information 
should be provided as part of a library's 
specification or interface.
■Compilers should be domain agnostic. 

Rather than building ad hoc compiler technology  
for each domain, the compiler should transform 
programs in that domain without having been 
explicitly specialized for that domain.
■Compilers should optimize for multiple 

objectives. A compiler should be parameterized 
by the optimization target (performance, energy-
efficiency, communication-minimization, etc.).

Unlike many domain-specific approaches, one of 
our primary goals is to ensure that our compiler can 
optimize across domains. This requires that the 
compiler understand transformations and 
optimizations in a domain-oblivious manner

Modern scientific applications are built out of 
numerous libraries, spanning a variety of domains. 
Finding the most efficient way to use and compose 
the abstractions provided by libraries to solve a 
problem is a difficult, tedious task. Traditional 
compilers do not understand library semantics and 
cannot optimize across abstraction boundaries.
Domain-specific approaches mitigate these issues 
by incorporating semantic knowledge about 
domains into languages, compilers and runtimes. 
This allows properties of domain abstractions to be 
leveraged when optimizing an application. 
However, most domain-specific approaches are too 
specific: each domain has its own languages and 
compilers, its own representations of abstractions 
and its own optimization strategies. This makes it 
difficult to target applications that span multiple 
domains, including emerging computational science 
applications such multi-scale, multi-physics 
simulations.
What is needed are approaches that allow generic 
compilers and runtime systems to incorporate 
domain knowledge without being specialized to a 
single domain.

To demonstrate the utility of our 
infrastructure, we are targeting !

two specific application classes, both of which feature complex domains with rich 
semantics. First, we are examining loosely-coupled, multi-scale computational 
mechanics, which involves multiple temporal- and spatial-scales and multiple 
solution and coupling strategies, the various combinations of which lead to 
hundreds of thousands of possible solutions. We will use the semantics of 
domain decomposition, solving and coupling to find efficient solutions. Second, we 
are studying the peridynamics code Peridigm, which uses peridynamic methods to 
simulate large-scale physical systems (such as the fragmenting cylinder to the right). 
This application is built on the Trilinos components, a highly-tuned set of libraries. We !
will use the semantic and locality properties of these libraries in our optimization.

Challenge applications



We will develop a unified intermediate representation 
(IR) that can capture high level abstractions provided 

by domain libraries. The IR will represent programs built with domain libraries as expression trees that 
capture the dataflow of a program, with library methods as operations in those trees.
Domain libraries will provide 
translations to and from our 
common IR; annotations that 
describe high level properties 
of operations that drive 
transformations (e.g., 
commutativity); and cost 
models that capture various 
cost metrics for library 
methods.
Our generic compiler can 
then use the annotations to 
transform a source program, 
generating a space of 
equivalent programs. The 
compiler then uses the cost models to search the space of equivalent programs, finding a low-cost 
implementation according to a user-provided objective (e.g., to minimize communication costs).
Because all libraries use a common annotation language, a program using multiple distinct libraries can be 
described in the unified representation of our IR. Hence, our compiler can apply transformations that span 
multiple libraries or even domains.

Project overview and approach

Impact
SLEEC is expected to impact exascale 
programming along a number of dimensions:
■Programmability. SLEEC allows programmers 

to use high level domain libraries while still 
allowing compiler-driven optimization, letting 
programmers focus on correctness instead of 
performance.
■Performance portability: SLEEC can enable 

library selection, or replacing certain domain 
constructs with variants that perform better on 
different architectures.
■Scalability. SLEEC’s transformations allow code 

to be transformed to take advantage of 
accelerators, or to enhance locality and 
parallelism.
■Energy efficiency. SLEEC’s cost models can 

capture energy efficiency, letting the compiler’s 
parameterized optimization strategy search for 
energy-efficient, rather than high-performance, 
implementations
■Resilience. SLEEC’s cost models can capture 

fault-tolerance properties, letting the compiler 
automatically select more resilient library 
implementations only when necessary.

Research challenges
■How should the annotation language look? It 

should be rich enough to capture important 
domain properties, but simple enough for 
domain experts to use.
■How should the compiler perform its 

optimization? We require heuristics and search 
strategies to quickly prune a large search space 
of program variants and find a low-cost 
implementation.
■How can we deal with multi-domain programs? 

We must be able to perform optimizations 
across domains. How do the IR and annotation 
languages need to be modified to accommodate 
cross-domain transformations?
■How can we deal with incomplete information? 

The infrastructure must gracefully degrade even 
if only incomplete annotations are provided. Can 
we infer missing annotations? 
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