
SLEEC: Semantics-rich Libraries
for Effective Exascale

Computation

Milind Kulkarni
Arun Prakash
Sam Midkiff

Michael Parks
Daniel Turner

https://engineering.purdue.edu/SLEEC

Wednesday, April 6, 16

https://engineering.purdue.edu/SLEEC
https://engineering.purdue.edu/SLEEC

X-Stack PI meeting	 April 6–7, 2015

Project vision

2

SLEEC

Semantics-based Optimization
Framework

Annotation Framework

Domain Library 1

Domain Library 2

Domain Library 3

Domain Library n

Communication annotations

Annotated Library 1
Annotated Library 2Annotated Domain

Library 3

Algebraic annotations

Annotated Library 1
Annotated Library 2Annotated Domain

Library 3

Commutativity/associativity

Annotated Library 1
Annotated Library 2Annotated Domain

Library 3

Generic, semantics-aware
runtime

Generic, semantics-aware
compiler

Generic, semantics-aware
inspector/executor system

Transformations, Cost
models, Heuristics, etc.

Transformations, Cost
models, Heuristics, etc.

Transformations, Cost
models, Heuristics, etc.

Wednesday, April 6, 16

X-Stack PI meeting	 April 6–7, 2015

Project status

3

SLEEC

Semantics-based Optimization
Framework

Annotation Framework

Domain Library 1

Domain Library 2

Domain Library 3

Domain Library n

Communication annotations

Annotated Library 1
Annotated Library 2Annotated Domain

Library 3

Algebraic annotations

Annotated Library 1
Annotated Library 2Annotated Domain

Library 3

Commutativity/associativity

Annotated Library 1
Annotated Library 2Annotated Domain

Library 3

Generic, semantics-aware
runtime

Generic, semantics-aware
compiler

Generic, semantics-aware
inspector/executor system

Transformations, Cost
models, Heuristics, etc.

Transformations, Cost
models, Heuristics, etc.

Transformations, Cost
models, Heuristics, etc.

(M
ul
tiG
PU
)

Se
m
C
ac
he

M
ul

ti-
tim

es
ca

le

op
tim

iz
er

C
nC

X

fo
rm

s

Wednesday, April 6, 16

X-Stack PI meeting	 April 6–7, 2015

Multi-timescale optimizer

4

SLEEC

Semantics-based Optimization
Framework

Annotation Framework

Domain Library 1

Domain Library 2

Domain Library 3

Domain Library n

Communication annotations

Annotated Library 1
Annotated Library 2Annotated Domain

Library 3

Algebraic annotations

Annotated Library 1
Annotated Library 2Annotated Domain

Library 3

Commutativity/associativity

Annotated Library 1
Annotated Library 2Annotated Domain

Library 3

Generic, semantics-aware
runtime

Generic, semantics-aware
compiler

Generic, semantics-aware
inspector/executor system

Transformations, Cost
models, Heuristics, etc.

Transformations, Cost
models, Heuristics, etc.

Transformations, Cost
models, Heuristics, etc.

(M
ul
tiG
PU
)

Se
m
C
ac
he

M
ul

ti-
tim

es
ca

le

op
tim

iz
er

C
nC

X

fo
rm

s

Wednesday, April 6, 16

X-Stack PI meeting	 April 6–7, 2015

Computational mechanics

■ Target: multi-scale computational mechanics codes

■ Loosely coupled problem as in intro

■ Different subdomains use different time steps (smaller time
steps for subdomains that need more accuracy)

5
Wednesday, April 6, 16

X-Stack PI meeting	 April 6–7, 2015

Coupling trees

■ Two basic operations:

■ LeafSolve: solve a single subdomain at a given time step

■ Couple: merge solutions from two subdomains to form
“larger” subdomain

6
Wednesday, April 6, 16

X-Stack PI meeting	 April 6–7, 2015

Optimizing coupling trees

■ Couple is associative and commutative

■ Couple’s operands are also independent (parallelizable)

■ Additional restriction based on domain: all domains at a given time step
must be coupled before coupling with domains at other time steps

■ Can be integrated into basic transformation rules:

■ Each operand has time step information

■ Time step of Couple(a, b) result is max(a, b)

■ Couple only associative if all operands are at the same time step

7

+ C

BA

+

A +

CB

+

+

BA

+

AB

Wednesday, April 6, 16

X-Stack PI meeting	 April 6–7, 2015

Optimizing coupling trees

■ Cost models for LeafSolve and Couple

■ LeafSolve: based on size of subdomain

■ Couple: based on size of interface between coupled
subdomains, and time step ratio of subdomains

■ Built heuristic based on costs

■ Attempts to produce balanced trees while minimizing overall
cost and respecting constraints on coupling

8
Wednesday, April 6, 16

X-Stack PI meeting	 April 6–7, 2015

Extensions

■ Apply generic scheduling scheme to other domains

■ Domain-aware partitioning

■ Take advantage of cost model information to decompose
problem more intelligently

9
Wednesday, April 6, 16

X-Stack PI meeting	 April 6–7, 2015

Extension to other domains

■ SLEEC student, Payton Lindsay, has been collaborating with PI
Mike Parks to develop multi-timescale version of Peridigm

■ Key challenge: “interface” between domains in peridynamics
very different than interface in computational mechanics

■ Paper accepted to CMAME

10
Wednesday, April 6, 16

X-Stack PI meeting	 April 6–7, 2015

Use case: Cross-domain application of semantics-
based infrastructure

■ Peridynamics has different operations than computational
mechanics, but have same high level semantics

■ Recall two basic operations: “solve” a subdomain and “couple”
two subdomains

■ Solving a subdomain = solving peridynamics problem

■ Coupling subdomains = exchanging information at boundary
layer, which extends into each subdomain

■ But coupling is still associative and commutative

■ Can directly apply scheduling framework, as framework does not
care about concrete operations, but only high level semantics

■ Prototype demonstrated last summer at Sandia, paper under
preparation

11
Wednesday, April 6, 16

X-Stack PI meeting	 April 6–7, 2015

Domain-aware partitioning

■ Key problem in multi-timescale method: identifying appropriate
decomposition of problem into subdomains and timescales

■ Constraint: particular elements must run at sufficiently low time
scale to ensure stability

■ Smaller elements (around more detailed domain features)
need to run at smaller time scale

■ Objectives: minimize overall computation time, maximize
parallelism

12
Wednesday, April 6, 16

X-Stack PI meeting	 April 6–7, 2015

Obvious solutions don’t work

■ Run all elements at smallest time scale, use scheduling approach
we devised before

■ Large elements are simulated at too-fine granularity, wastes
work

■ Partition without considering time scale information

■ A subdomain has to be run at the time scale of the smallest
element in it (or stability is lost) → same problem as above

■ Let each element run at exactly the time scale it wants

■ Wind up with complex boundaries between subdomains at
different time scales → coupling cost increases

13
Wednesday, April 6, 16

X-Stack PI meeting	 April 6–7, 2015

Solution: domain-aware partitioning

■ Perform partitioning using modified version of traditional
partitioning algorithms (multi-level partitioning a la Metis)

■ Allow elements to move between time scales

■ Large elements can run at lower time scale if it reduces
interface complexity enough

■ Provide domain-specific cost model to partitioning algorithm

■ Partition weights based not only on number of elements in
partition (as in traditional partitioners), but also based on
time scale domain will run at

■ Interface weights during refinement phase based on time
scale

14
Wednesday, April 6, 16

X-Stack PI meeting	 April 6–7, 2015

Results

■ For large problems with wide range of element sizes (e.g., beam
with a notch), gives 10x performance improvement over naïve
partitioning, ~20% improvement over careful, domain-aware
partitioning that attempts to keep elements at the same
timescale in the same subdomain

■ Automatically select number of subdomains, time step ratios,
etc.

■ Poster presented at SC 2015, paper under preparation

15
Wednesday, April 6, 16

X-Stack PI meeting	 April 6–7, 2015

Project status

16

SLEEC

Semantics-based Optimization
Framework

Annotation Framework

Domain Library 1

Domain Library 2

Domain Library 3

Domain Library n

Communication annotations

Annotated Library 1
Annotated Library 2Annotated Domain

Library 3

Algebraic annotations

Annotated Library 1
Annotated Library 2Annotated Domain

Library 3

Commutativity/associativity

Annotated Library 1
Annotated Library 2Annotated Domain

Library 3

Generic, semantics-aware
runtime

Generic, semantics-aware
compiler

Generic, semantics-aware
inspector/executor system

Transformations, Cost
models, Heuristics, etc.

Transformations, Cost
models, Heuristics, etc.

Transformations, Cost
models, Heuristics, etc.

(M
ul
tiG
PU
)

Se
m
C
ac
he

M
ul

ti-
tim

es
ca

le

op
tim

iz
er

C
nC

X

fo
rm

s

Wednesday, April 6, 16

X-Stack PI meeting	 April 6–7, 2015

CnC Transformations

■ Concurrent collections is a dataflow-esque programming model

■ Part of Traleika Glacier X-Stack project

■ CnC steps that represent computation

■ Steps produce data and control tags consumed by other
steps

■ Program representation as a graph of computations

17
Wednesday, April 6, 16

X-Stack PI meeting	 April 6–7, 2015

LULESH case study

18

12

Wednesday, April 6, 16

X-Stack PI meeting	 April 6–7, 2015

CnC Transformations

■ Can consider optimizations of CnC programs as graph rewrites

■ Step fusion: merge together two (or more) steps across the
same data item

■ Tiling: merge together different dynamic instances of a step
across different data items

■ Can use SLEEC graph-rewriting technology to perform
optimizations of CnC programs

19
Wednesday, April 6, 16

X-Stack PI meeting	 April 6–7, 2015

LULESH case study

20

LULESH: Fused Algorithm

21

Wednesday, April 6, 16

X-Stack PI meeting	 April 6–7, 2015

LULESH case study

21

Experimental Results cont.

23

Presented at WolfHPC 2015, extended version invited to IJPP

Wednesday, April 6, 16

X-Stack PI meeting	 April 6–7, 2015

Optimizing communication/synchronization
for accelerators

22

SLEEC

Semantics-based Optimization
Framework

Annotation Framework

Domain Library 1

Domain Library 2

Domain Library 3

Domain Library n

Communication annotations

Annotated Library 1
Annotated Library 2Annotated Domain

Library 3

Algebraic annotations

Annotated Library 1
Annotated Library 2Annotated Domain

Library 3

Commutativity/associativity

Annotated Library 1
Annotated Library 2Annotated Domain

Library 3

Generic, semantics-aware
runtime

Generic, semantics-aware
compiler

Generic, semantics-aware
inspector/executor system

Transformations, Cost
models, Heuristics, etc.

Transformations, Cost
models, Heuristics, etc.

Transformations, Cost
models, Heuristics, etc.

(M
ul
tiG
PU
)

Se
m
C
ac
he

M
ul

ti-
tim

es
ca

le

op
tim

iz
er

C
nC

X

fo
rm

s

Wednesday, April 6, 16

X-Stack PI meeting	 April 6–7, 2015

GPU offloading

■ One approach to heterogeneous computing: offload
computationally-intensive libraries to GPU

■ Advantages

■ Easy to program (just replace library calls!)

■ Disadvantages

■ No notion of how library calls interact

■ Existing library-based approaches either

■ Take control of all communication, introducing overhead
(CULA)

■ Leave communication up to the programmer, losing
programmability (Cublas)

23
Wednesday, April 6, 16

X-Stack PI meeting	 April 6–7, 2015

Example

24

1. BLAS(A x B = C); //matrix multiply
2. BLAS(B x C = D); //matrix multiply
3. BLAS(C x D = E); //matrix multiply

CPU
Send	A,	B

GPU

Start	 C	=	A	*	B

D	=	B	*	C

E	=	C	*	D

Receive	E

(b)	Communica;on	op;mized

CPU
Send	A,	B

GPU

Start	 C	=	A	*	B

D	=	B	*	C

E	=	C	*	D

Receive	C

Send	B,	C
Receive	D

Send	C,	D
Receive	E

(a)	Communica;on	un-op;mized

Write/	
Read	E

Write/	
Read	E

Wednesday, April 6, 16

X-Stack PI meeting	 April 6–7, 2015

What are my options?

■ Compiler analysis?

■ Imprecision is an issue

■ Conservative estimate of what is accessed → too much communication

■ Scalability is an issue

■ Large, modular programs; same code being used in different ways

■ DSM?

■ Granularity is an issue (page based)

■ Fixed mapping between GPU and CPU address spaces

■ What if data is too big for GPU?

■ No semantic information

■ Cannot change data layout between devices

25
Wednesday, April 6, 16

X-Stack PI meeting	 April 6–7, 2015

Solution: semantics-aware communication
optimization

■ Hybrid static/dynamic approach

■ Augment libraries with information about what data needs to be read/
written, any data transformations

■ Semantics-aware run-time tracks data, eliminates unnecessary movement

■ Essentially, treat GPU memory as a cache

■ Tracks data at the granularity of libraries

■ Transparently performs data-layout changes (e.g., column-major to row-
major)

■ Dynamic tracking of data means precise data movement

■ Keeps data up-to-date on both devices

■ No extra communication

■ Paper presented at ICS 2013

26
Wednesday, April 6, 16

X-Stack PI meeting	 April 6–7, 2015

Results

■ Same computational mechanics code as before

27

0

0.3

0.6

0.9

1.2

Rocket32 Cube14 Cube10

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

Inputs

CPU
CULA
CUBLAS (Baseline)
SemCache

Wednesday, April 6, 16

X-Stack PI meeting	 April 6–7, 2015

Multi-GPU SemCache

■ SemCache provides automatic data management for
heterogeneous nodes with a single GPU

■ Programmer writes code using regular scientific libraries that
have GPU versions, SemCache manages communication
between CPU and GPU

■ Extended SemCache to work with multiple GPUs

■ Paper presented at ICS 2015

28
Wednesday, April 6, 16

X-Stack PI meeting	 April 6–7, 2015

Challenges – Data decomposition

■ Offloading to one GPU is easy: all data moves to GPU;
offloading to multiple GPUs requires decomposing data and
computation across GPUs

■ SemCache compatible with task decompositions of library calls

■ e.g., DGEMM internally decomposed into several matrix
multiplies on submatrices

■ SemCache tracks submatrices, portions of data on each GPU,
communicates submatrices as necessary

29

C = A + B

C1 = A1 + B1
C2 = A2 + B2

SEND A1 SEND B1

SEND A2 SEND B2

COMP C1

COMP C2

TIME

Wednesday, April 6, 16

X-Stack PI meeting	 April 6–7, 2015

Challenges – Synchronization

■ Best performance achieved when multiple tasks run simultaneously

■ Subtasks for individual library call can be synchronized easily

■ Want to synchronize across library calls:

■ Hard to do manually or at compile time because do not know what calls are
coming next

■ SemCache automatically inserts synchronization to make sure subtasks wait on
dependences, even across library calls

■ Automatically detects when data is needed on CPU, makes sure relevant tasks
complete before sending data back

30

C = A + B
E = C + D

SEND A1 SEND B1

SEND A2 SEND B2

COMP C1

COMP C2

TIME

SEND D1 COMP E1

SEND D2 COMP E2

Wednesday, April 6, 16

X-Stack PI meeting	 April 6–7, 2015

Challenges – Data representation

■ Suppose we want to split SpMV across two GPUs

y = A * x

■ Can decompose by splitting A by rows. Half of A sent to each
GPU, all of x sent to each GPU:

y1 = A1 * x

y2 = A2 * x

■ But CSR format means that A1 and A2 are not just a subset of
data for A. Must recompute indexing arrays!

■ SemCache’s ability to make semantic links lets the
decomposition of the matrix across GPUs be associated with the
whole matrix on the CPU

31
Wednesday, April 6, 16

X-Stack PI meeting	 April 6–7, 2015

Results

32

Jacobi iteration Conjugate gradient

Wednesday, April 6, 16

X-Stack PI meeting	 April 6–7, 2015

Use case: Kokkos + SemCache

■ Kokkos is data structure library in Trilinos

■ Supports transparent distribution of matrices/arrays across
nodes and offloading to GPU/accelerators

■ Communication currently performed manually (Kokkos
directives to move data to/from GPU)

■ Working to integrate SemCache with Kokkos-enabled library
calls

■ Will automatically manage movement of Kokkos data
structures to/from GPU

■ Will enable multi-GPU offloading (Kokkos currently supports
multiple GPUs through MPI)

33
Wednesday, April 6, 16

X-Stack PI meeting	 April 6–7, 2015

Sample code using SemCache

34

Simple calls to
readGPU or write
GPU, no need for
manual testing/

synching of memory
as shown here

Wednesday, April 6, 16

X-Stack PI meeting	 April 6–7, 2015

SemCache vs. Kokkos on MiniFE

35

C
om

pu
te

 T
im

e
(s

ec
)

Problem Size (# elem)

Wednesday, April 6, 16

X-Stack PI meeting	 April 6–7, 2015

Summary/comparison

■ Multi-timescale optimization techniques

■ Inspector/executor techniques have been used to schedule computations (sparse MVM, sparse
Cholesky, etc.)

■ Techniques often very application specific

■ First approach to target domain decomposition problems

■ Takes advantage of semantics, but not domain specific

■ CnC transformations

■ CnC programs look like dataflow graphs

■ Our approach: use graph rewriting techniques to implement optimizations such as fusion and
tiling

■ Communication optimization for accelerator programs

■ Prior approaches have used compiler analysis, DSM-based approaches or special language
constructs

■ SemCache works with any offloading library

■ Handles multiple GPUs, different data representations

■ Cleanly integrates with existing programming models (e.g., Kokkos)

36
Wednesday, April 6, 16

X-Stack PI meeting	 April 6–7, 2015

SLEEC: Semantics-rich Libraries for
Effective Exascale Computation

37

SLEEC

Semantics-based Optimization
Framework

Annotation Framework

Domain Library 1

Domain Library 2

Domain Library 3

Domain Library n

Communication annotations

Annotated Library 1
Annotated Library 2Annotated Domain

Library 3

Algebraic annotations

Annotated Library 1
Annotated Library 2Annotated Domain

Library 3

Commutativity/associativity

Annotated Library 1
Annotated Library 2Annotated Domain

Library 3

Generic, semantics-aware
runtime

Generic, semantics-aware
compiler

Generic, semantics-aware
inspector/executor system

Transformations, Cost
models, Heuristics, etc.

Transformations, Cost
models, Heuristics, etc.

Transformations, Cost
models, Heuristics, etc.

(M
ul
tiG
PU
)

Se
m
C
ac
he

M
ul

ti-
tim

es
ca

le

op
tim

iz
er

C
nC

X

fo
rm

s

Wednesday, April 6, 16

