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Introduction 
This report outlines the work that was done in the first three quarters by the DynAX 
Team (ET International, Reservoir Labs, UIUC, and PNNL) and work expected to be 
completed in the fourth quarter. 

Accomplishments 
The accomplishments for the year are broken down into four sections corresponding to 
accomplishments of each of the four teams: ETI, Reservoir, UIUC, and PNNL. 

PNNL Accomplishments 

Applications and performance studies 
We identified two NWChem modules to server as representative benchmark for 
Exascale chemistry applications: 1) Self-Consistent Field Method, and 2) Coupled 
Cluster method.  We have completed and released the first and are preparing the 
second.  Our release includes source code, makefile, input file, output file, and 
optimization suggestions.  We prepared a powerpoint presentation and Word document 
describing the mathematics, control flow, and data structures of SCF. 
 
The Self-Consistent Field Method (SCF) is often the central and most time consuming 
computation in ab initio quantum chemistry methods.  It is used to solve the electronic 
Schrodinger Equation, assuming that each particle of the system is subjected to the 
mean field created by all other particles.  The solution to the Schrodinger Equation 
reduces to the following self-consistent eigenvalue problem 

F!"   =   h!" +   
!
!
   [(ωλ) − (µμω|υλ)]  D!"!"     [1] 

F!"  C!! =   ε  S!"C!! [2] 
D!"   =    C!!C!!!  [3] 

where F is the Fock matrix, C are the eigenvectors of the system, ε are the eigenvalues, 
S is the electron force overlap matrix, D is the system density matrix, h are the one-
electron forces, and the terms in the square brackets in Equation 1 are the two-electron 
Coulomb forces and the two-electron Exchange forces, respectively. 
 
Figure 1 depicts the control flow of the code we released.  The upper two leftmost 
modules initialize the D and C matrices allowing the first iteration to compute Equations 
1 and 2.  The Construct Fock Matrix, Compute Orbitals, and Compute Density Matrix 
modules compute Equations 1, 2, and 3, respectively.  The Damp Density Matrix 
module scales the density matrix and finds the greatest changed value between the 
current and previous density matrix.  If the absolute value of the change is less than a 
threshold value, the method terminates; otherwise, a new iteration is started.  The 
method terminates after 30 iterations if convergence is not reached.  Figure 2 gives the 
modules’ names, and array inputs and outputs. 



 
The modules comprise simple rectangular, nested for loops of the form.  For the most 
part, the loops are embarrassingly parallel, but the inclusion of reduction operations in 
some loops requires concurrent atomic updates.  The most computationally intensive 
routine is twoel that computes the two electron forces.  Guards in the innermost loop 
impose a cutoff limit and reduce significantly the number of updates computed.  The 
guards can be hoisted to reduce loop overhead as explained in the optimization file that 
accompanies the code release.  We note that the h values (one electron forces) and g 
values (two electron forces) used in computing the Fock matrix are constants, so they 
could be precomputed, saved, and reused.  As explained in the optimization file 
released with module, symmetries in g can be exploited to minimize storage and 
computation requirements. 
 
The second module, the Coupled Cluster method, is interesting in that the code is 
generated automatically from tensor equations supplied by the user.  Each equation is 
expressed as function called from a driver that maneuvers a DAG of the data 
dependencies. DAG presents a variety of scheduling alternatives and when coupled 
with the unbalanced data parallel character of the tensor operations and data locality 
issues provides a rich environment for optimization and evaluation of emerging 
Exascale execution models. 

RPDTA for PEDAL 
For the most part our work on a Power Efficient Data Abstraction Layer (PEDAL) for 
Rescinded Primitive Data Type Access (RPDTA) is being funded by the Traleika Glacier 
XStack Project (see Project Progress Report FWP PNNL-62464).  Under this project we 
are considering only modifications required by Brandywine, and collaborating with 
UDEL to define a set of introspection options deemed useful for the FSIM simulator 
maintained by ETI.  

 
Figure 1 – SCF control flow 



 
Figure 2 – SCF modules, inputs, and outputs 

ETI Accomplishments  

Cholesky Decomposition 
We used this application to study issues of tiling, scheduling and memory management 
at scale.  Starting with a basic implementation on SWARM, we made significant 
scalability improvements, and studied ways to balance the workload at runtime. 

Data Distribution & Work Imbalance 
The input and output matrices are symmetric, and only half of the data is stored for 
space efficiency reasons.  We found that simple round-robin assignment of tile data to 
nodes leads to significant workload imbalance, and found ways to produce a more even 
workload balance. 

Scheduling: Task Prioritization 
Cholesky has a complex inter-tile dependency DAG, and this DAG spans nodes.  We 
found that it is not sufficient for a compute node to simply execute tasks in FIFO order, 
and it is not sufficient to prioritize tasks based on task type.  We found that a priority 
scheme which encourages the compute nodes to traverse the matrix in a certain order 
(top to bottom, or left to right) causes parallelism to be exposed much more consistently, 
and greatly reduces the potential for compute node starvation issues. 

Memory Usage for Intermediate Data 
As the node count increases, the ratio of data considered “remote” vs. “local” increases 
greatly.  This “remote” data is often an input dependency for local computation, but as 
the node count increases, it quickly becomes impossible to store copies of all of the 
remote data locally at the same time.  We implemented a form of pre-fetch, which gets 
the right data at the right time to keep the local computation busy without running out of 
memory. 



 
We first implemented pre-fetch by fetching one row of remote data at a time, and 
attempting to stay a certain number of tile rows ahead of the computation.  Because the 
matrix is symmetric, the tile rows vary in length, and this approach required careful 
tuning.  A later and better approach was to keep track of how much memory the 
compute node has, and fetch new data whenever it will fit. 

Results 
Results and further details can be found in the Q1 report here: 
https://www.xstackwiki.com/index.php/File:BrandywineXStackReportQ1.docx and 
https://www.xstackwiki.com/index.php/File:Q1-cholesky.pptx. 

SCF 
We optimized and parallelized the SCF (Self-Consistent Field) code provided by PNNL, 
and explored some ways to improve it even further.  These improvements are 
discussed below, organized by the math kernels involved in computing SCF. 

Twoel 
This math kernel computes the two-electron interactions, and is implemented as an n! 
series of nested loops.  It is by far the most computationally intensive element of the 
program. 

Serial Optimizations 
We improved the performance of twoel on a single thread in many ways, including: 

● Additional sparsity tests to skip loop iterations 
● Used many symmetries in the computationally expensive g() function, to reduce 

the number of times it must be called 
● Used lookup tables to increase the performance of g() 
● Adapted several linear algebra operations (such as matrix multiply, and finding 

eigenvalues) to use BLAS/LAPACK 
● Using symmetry of the “dens” and “fock” arrays, to reduce the amount of memory 

access 
● Caching the output of g() for use in subsequent iterations 

Single-Node Parallelization 
We implemented two multi-threaded versions of twoel, one using OpenMP and one 
using SWARM.  In both implementations, each thread enumerates a subset of the n! 
iteration space, and generates its own copy of the “fock” matrix containing the results of 
those subsets.  Those copies of “fock” are summed together at the end to produce the 
final result. 
 
Twoel in SWARM saw linear speedup until the processor core count was reached, and 
then a slower rate of performance increase until the hyperthread count was reached. 

Multi-Node Parallelization 
We implemented two multi-node versions of twoel, one using MPI and one using 
SWARM.  We tested these implementations at up to 128 nodes; on 128 nodes, the 



SWARM version of twoel executed faster than the single-node implementation of 
diagon. 
 
At higher node counts, uneven workload distribution starts to become a major factor - 
some nodes may spend 25% of the total twoel execution time waiting for other nodes to 
finish.  We studied ways to reduce the impact of this imbalance. 

Diagon 
At large node counts, and with the above optimizations in place, single-node diagon 
actually takes longer than twoel.  This function is challenging to distribute, as it is made 
up of multiple BLAS/LAPACK operations with different data dependency patterns.  We 
started to study some ways to distribute it effectively across multiple nodes. 

Results 
Results and further details can be found in the Q2 and Q3 reports: 
https://www.xstackwiki.com/index.php/File:BrandywineXStackReportQ2.pdf and 
https://www.xstackwiki.com/index.php/File:BrandywineXStackReportQ3.pdf. 

Reservoir Accomplishments 
Compiler optimization design for SCF 
We considered some of the most impactful optimizations performed by ETI on the SCF 
code and defined how they would be implemented in a compiler that supports both 
polyhedral loop optimization and traditional SSA compiler analysis like R-Stream.  
 
Automating the use of symmetry in input data 
We demonstrated how known symmetries in the input data can be used by a polyhedral 
loop optimizer to reduce the number of evaluations of the input data by up to 2n, where 
n is the number of independent symmetries. The method computes a partition of the 
loop iterations, where every set is associated with a different expression of the input 
data access function.  
 
Automating the precomputation of pure function values 
We showed how to automate the pre-computation of heavily-reused sub-expressions in 
loop codes by combining polyhedral scope analysis, used to create the pre-computation 
arrays, with traditional subexpression analysis to form side-effects-free subexpressions 
(whose computation can be hoisted). We defined an algorithm that detects large-
enough subexpression and trades off subexpression size for number of loop indices the 
subexpression depends upon. Depending upon fewer loop indices entails more 
occurrences of execution time saving (through pre-computation), while forming a larger 
sub-expression entails more execution time saving at each occurrence.  

Automatic parallelization to SWARM (single-node, untuned)  
We first implemented generic support for parallelization to codelet-based codes in R-
Stream’s polyhedral mapper. This consisted in defining the expected behavior of the 
polyhedral mapper when the target execution model is based on codelets. 



To point out the main ones: 
- The need for creating explicitly parallel loops disappears, and 
- Codelets and inter-codelet dependencies need to be explicitly declared.  
We tested these codelet-generic aspects using a back-end to OCR (funded in a 
separate project). 
Then we used this generic codelet support to generate SWARM code. In our SWARM 
backend, dependence polyhedrons become “put”s in codelets producing the 
dependence, and symmetrically become “get”s in codelets consuming the dependence.  
Asynchronous gets are supported as well through the R-Stream SWARM runtime layer, 
which keeps track of dependences that haven’t been satisfied and yields control if a 
codelet needs to re-schedule itself. 
We also support the generation of SWARM macros for defining codelet descriptors.  

Dependence computation simplification 
We identified and tackled the main bottleneck in generating codelet-based code using 
polyhedral techniques: the computation of inter-codelet dependence polyhedrons. We 
developed techniques for creating simpler dependence polyhedrons by: 
- using approximations based on loop type information (doall, permutable) to bypass 
heavy-weight dependence computation, and 
- leveraging groups of uniformly generated references to reduce the number of convex 
dependence polyhedrons to compute. 
We also simplified the compile-time computation of dependence polyhedrons by 
postponing some of their evaluation to run-time.  

UIUC Accomplishments 
 
Various enhancements to the Parallel Intermediate Language (PIL) were implemented 
during the first three quarters and an evaluation of Cholesky decomposition in PIL was 
carried out. Enhancements affected the PIL libraries and the language semantics for 
data management. New capabilities include:  tiled array data representation, Structured 
PIL (SPIL) extension, and SPMD PIL. 
 
To evaluate the effect of overhead on PIL programs, a study using the Cholesky 
decomposition was implemented in PIL and the execution time of the PIL version was 
compared with a hand-coded SWARM implementation. The PIL code targeting both 
SWARM and OpenMP show scalability with increased number of threads and little 
execution overhead. 
 
Library functions can now be written as collections of PIL nodes. At the beginning of the 
project, PIL programs had a flat organization and contained a collection of nodes linked 
by dependence arcs to form a parallel program written in terms of codelets. With the 
new extension, one can now also implement a parallel kernel as a subgraph of PIL 
nodes and include it as a library function. In this way, it is now possible to enter a kernel 
as a subgraph at any point in the execution of a PIL program, suspend the execution of 
the program, perform the desired operation by executing the codelets in the order 
enforced by the dependences, and return execution control to the program that made 



the request at the end of the kernel. Hierarchically Tiled Arrays (HTAs) were 
implemented using this new PIL library feature. Our new PIL library feature facilitates 
reusability of common parallel operations and algorithms. 
 
Supports for a data structure for creating and manipulating tiled arrays, as well as 
fundamental parallel operations on tiled arrays were also designed. Our design allows 
dense arrays to have a row-major or tile-major layout for different optimization 
requirements. Operations for expressing data associations with codelets as well as data 
movement operations were also designed. These extensions provide programmers with 
high level representation and operations and the ability to manipulate the data either 
automatically by compiler or manually to optimize data movement.  
 
The design of a high level language SPIL was also completed. It provides syntactic 
sugar for common operations in PIL for programming convenience and code readability. 
The SPIL will have a source-to-source translator to generate code in PIL. With SPIL, 
programmers can express their parallel algorithm more easily and more intuitively than 
using PIL. 
 
For distributed memory environment, a new design SPMD PIL was implemented 
targeting distributed SCALE. With this extension, PIL can be programmed in an SPMD 
fashion. Once an executable is invoked, all Processor Elements (PEs) execute the 
same program concurrently. Each execution instance running on a PE manages local 
memory space and executes independently. Once in need of communication with each 
other, PIL invokes SWARM network APIs to send data to and receive data from remote 
PEs. Barrier API is also implemented to allow explicit synchronization across PEs and 
enforce an ordering of execution intended by programmers. In this model, software 
designers have a finer-grained control to  communications in distributed memory 
environment, which permits better performance optimization.  
 
PIL API document is updated to version 0.4 to reflect all the new features described 
above. It can be found at https://www.xstackwiki.com/index.php/DynAX#Deliverables 
 
In the final quarter, we plan to continue working on sparse data representation in PIL, 
since the use of sparse data sets frequently appears in scientific applications. Our goal 
is to deliver an easy and intuitive representation of sparse data and a high performance 
implementation in PIL in order to expedite application development. 

 
  



 

Technologies Delivered 
Technologies that are delivered can be found on the DynAX page of the X-Stack wiki:  
https://www.xstackwiki.com/index.php/DynAX#Deliverables 

Technologies Delivered (Q1-Q3): 
● NWChem SCF module: 

○ Serial C version (PNNL-Q2) 
○ Optimized C version (ETI-Q2) 
○ OpenMP Version (ETI-Q2) 
○ MPI Version (ETI-Q2) 
○ SWARM single and multi-node Version (ETI-Q2/Q3) 

● NWChem TCE module:  
○ Serial C Version (PNNL-Q3) 
○ OpenMP Version (PNNL-Q3) 
○ CUDA Version (PNNL-Q3) 
○ Fortran99 Version (PNNL-Q3) 

● Cholesky Decomposition optimization for scheduling, memory management and 
self-awareness (ETI) (Q1) 

● Stencil framework for CnC and SWARM (Reservoir-Q3) 
● Single-node untuned automatic mappable C -> SWARM parallelization with R-

Stream (Reservoir-Q3) 
● Parallel Intermediate Language (PIL) -> SCALE translator  

○ Single Node (UIUC-Q1/Q2) 
○ Multinode (UIUC-Q3) 

● PIL API Document (UIUC-Q2/Q3) 

Technologies anticipated to be delivered (Q4): 
● NWChem TCE Module: 

○ SWARM single node version (ETI) 
○ Basic single-node parallelization to SWARM using R-Stream 

● R-Stream (Reservoir):  
○ Tuned single-node mappable C -> SWARM parallelization 
○ Untuned Multi-node mappable C -> SWARM parallelization 
○ Simplified domain computation (Improvement of compiler engine 

tractability) 
● Sparse data representation in PIL (UIUC) 

Technologies in progress in Year 1 to be completed in Years 2-3: 
● Preliminary design and baseline energy study for NWChem reference kernels for 

SWARM (PNNL) 
● RPDTA for PEDAL (PNNL) 
● Asynchronous Distributed Tile Operation Stack (ETI) 
● R-Stream optimizations for SCF defined in Q2 



● More SWARM-specific optimizations in R-Stream as we experiment with 
SWARM parallelization. 

Presentations 
● Project overview presentation: PI Kickoff meeting in September 2012. 
● Project overview presentation: DOE ASCR meeting in October 2012. 
● Presentation on Cholesky Decomposition enhancements in December 2012. 
● Presentation to TACC on SCF optimizations in February 2013. 
● Progress-to-date presentation: 6-month PI meeting in March 2013. 
● X-StackProject overview and results: EXaCT all-hands meeting in May 2013. 

Publications 
None at this time.  
We are working on publications for the Cholesky and SCF work. 

Websites 
The DynAX group created and maintains the X-Stack wide website for meetings, project 
overviews, and deliverables at: http://xstackwiki.com. 

Unexpended Funds 
We do not anticipate any unexpended funds for the period 9/1/2012-8/31/2013. 


