XPRESS:

eXascale PRogramming
Environment and System
Software

Ron Brightwell

Coordinating PI
l.qlll:;

— mpl

Sandia
National X-Stack Pl Meeting
Laboratories

April 6-7, 2016

Exceptional

service

in the
#T ¥ US. DEPARTMENT OF
=% \/ &)
. %) NYSE
national 2/, ENERGY TV A 3
. v Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia C orporation, a wholly owned subsidiary of Lockheed
interest Martin Corporation, for th U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

XPRESS Team

Sandia
@ lNat}ional _ ROI%KGE
t i i .
I Sandia National Laboratories National Laboratory
Indiana University
Lawrence Berkeley National Laboratory
Louisiana State University
- Oak Ridge National Laboratory
A University of Houston
X "" University of North Carolina at Chapel Hill
University of Oregon

i Lsu O

Project Goal

= Prototype implementation of software stack (OpenX) to
support the ParalleX Execution Model

= HPX runtime system based on the ParalleX execution model that
supports dynamic resource management and task scheduling

= LXK lightweight operating system based on the Kitten OS that exposes
critical resources to HPX runtime system

= Runtime Interface to OS (RIOS) definition and description of the
interaction between HPX and LXK

= Support for legacy MPl and OpenMP codes with OpenX

-~

T e]
1l Lsu RIDGE Laboratories

National Laboratory

XPRESS Programming Environment Components

OpenUH Compiler C, C++ Compiler

|
if-mﬁﬁ (Open MPI Runtime\

OpenUH Runtime

HPX
[HPX-3] (HPX-5]
\ APEX -

/

RIOS
\ RCR |

Linux | | LXK
— <

@Nam N\ S/ /

XPRESS System Architecture (OpenX)

= ParalleX — execution model
= |ndiana University
= Cross-cutting execution model of system codesign
= LXK - Lightweight eXtreme-scale Kernel (Kitten)
= Sandia National Laboratories
= Fourth-generation scalable compute node operating system
= HPX runtime system software
= Louisiana State University, Indiana University
= Supports introspection for guided computing through dynamic adaptivity
= APEX, RCR —application introspection
= University of Oregon, RENCI
= Aderivative of Tau instrumentation and monitoring software system
= |ntegration of low-level system data acquisition
= RIOS — Runtime Interface to the OS
= Interface between the operating system and the runtime system
= Conventional Programming Interfaces for legacy interfaces and applications

= University of Houston, SUNY Stony Brook
= MPI, OpenMP

Key Differentiators of Our Approach

"= Guided by the ParalleX holistic execution model
= Provides a revolutionary programing environment for supporting
irregular, and time-varying applications
= Provides a framework for exploring key resource management
challenges
Dynamic, adaptive runtime system design
Integration of performance instrumentation and control
Operating system design

= Spans the entire software stack
= Support for legacy programming models and applications

Concept Formulation - ParalleX Execution Model
= Lightweight complexes (threads)

= Partially ordered operations Process A | Process B |

= Guaranteed local register sets

= Message-driven computation

= Move work to data
= Keeps work local, stops blocking

= Constraint-based synchronization

= Declarative criteria for work
{c) PN
= Eventdriven o
.. . | ==
= Eliminates global barriers ~
= Data-directed execution (a) Local data access Togend
(b) Local thread invocation (co-routine) Vitual pages In PGAS
= Me rg er Of ﬂ ow cont rol an d d ata (c) Local thread invocation (concurrent threads) — BEAS nadi0% translation
(d) LCO spawning a thread ‘ ' - m"
St ru Ct ure {e) Remote atomic memory operation through parcels : orators
{fy Remote thread invocation through parcels Nl D LCOs
(g) Percolation " Functon nvocatins
u S h are d Nname s p ace (h) Thread creation as result of continuation action —_— Local load-store cperations
- Percolation
= Global address space Loaalty

= Simplifies random gathers

Technical Strategies

Execution model for cross-cutting system co-design
= Unified model of variable parallelism semantics for scalability

Lightweight kernel for scalable efficient resource management
Exploitation of runtime information and control
= Runtime system software

Introspection
= Hardware and OS status monitoring
= Application runtime status and progress towards goal (VMG)
= Application informed policies

Dynamic adaptive computation for load balancing
Active Global Address Space

Low-level network transport layer for efficient remote task creation
Interoperability and incremental extensions of common interfaces

Application properties emphasizing irregular & time-varying

Programmatic Strategy

= Experimental software system

= Full systems stack

= Applications driven studies

= Quantitative evaluation of efficiency and scalability

= |mplications for hardware architecture

= |nteroperability with existing practices, systems, and libraries
" |nnovation where required, incrementalism where sufficient
= Preparation for production deployment

= Leverages prior and ongoing results from other sponsored research
providing synthesis and value added
= Engagement of breadth of expertise from labs and academia
= Avoid myopic paths limited by narrow perspectives
= Exploit breadth of experiences across sub-disciplines

PARALLEX EXECUTION MODEL

Formal Semantics for ParalleX

= Problem

Exascale execution models are large specifications defining the delicate interrelations of
their component layers and governing their interoperability. Defining execution models
is error prone, may leave undetected inconsistencies and may be incomplete.
Furthermore, execution models are hard to communicate effectively to programmers,
and researchers.

= How do | know whether my execution model is well designed?

= Solution

accuracy of the answer

Formal
Semantics
= Formal semantics allows for:

= A precise description of the execution model

= Detecting design mistakes early and ensuring the completeness of the
specified behavior

= Communicating the model effectively

= Opening the possibility of proving programs correct

Formal Semantics for ParalleX

= Recent Results
= QOperational semantics for a core fragment of ParalleX
= Proposal type system for ruling out data-races

= Executable prototype implementation of formal semantics
Excerpt from the operational semantics

M = S(memory), M(a) = c i Data flow Locals % § Data flow Locals
Z + z + y € c(control) : B a 13 1
c¢(locals)(z) = n, 2 b 20
c(locals)(y) = n, L,—" :_\ x 33 }
then S +—— S’ Q. o
where
= S{memory — M{a — c'}}

¢’ = {control — c(control) — {z + = + y},locals — L’}
L' = c(locals){z — n, +n,}

* Impact

The shift to eXascale computing promises a high impact on science and industry. Formal

Semantics will place eXascale computing on a firm foundation, enabling a more rapid and
confident shift to eXascale built upon a reliable and robust infrastructure.

HPX-5

Development and Extension - HPX-5

HPX-5 is an approximation of the ParalleX

ParalleX EM
execution model
L (R J
PROCESSES || PARCELS | : : I GLOBAL ADDRESS SPACE
HPX aau]{@@@J[m)|« = | & &
I Ly 1 3} 11 S J
| 4 FE IS
(| el Cewe)
SCHEDULER *
(" TRANSPORT /| PHOTON)
T e P R
[OPERATING SYSTEM @] J o e | e
20 o« BEBE 4 -

Integrated Communication Library

= Problem
= Support a tight coupling of the runtime
system with the underlying network fabric
that scales and remains performant in
eXascale environments

u Solution Applications / Runtimes

= Photon abstracts RDMA libraries across
systems and integrates with HPX-5 to
support 1-sided asynchronous networking
with a put-with-completion (PWC) model 1BV ueNt B libfabric shmem

= Network completion events drive interrupt-
style actions within HPX-5 to reduce

overhead and latency —
Wor n

Photon

= |mpact
= Photon in HPX-5 demonstrates improved
performance for application with a modular
design to support future generation
networks

Latency (us)

Latency {us)

Integrated Communication Library

PRGN

MA3

HPXS
'

1 I 1

Message Size (B)

Mellanox ConnectX-3 RoCE

PRCEON s
MPL3 —e—
HPXS P

I ! L I i

64 256 024

Message Saze (8)

PUT

GET

Latency (us)

Latency (us)

I I 1 1

Photo" e
VA1
HEXS e

' J

Message Size {B)

Cray XC30 Aries

PHotOn s
M3 =
HEKS

Message S2e (3)

Latency (us)

Latency (us)

32

| e f——— ™™ T Pesccces : K
Photon emfess :
: : : MPI-3 en@ue
, i i i HILL R
1 4 16 64 256 1024 4096
Message Size (B)
X-gene ARM64 RoCE
[photon et 1T
MPI-3 e
HPX-5 e

1 4 16 64 256 1024 4096
Message Size (B)

HPCG using HPX-5 — Various Approaches and Plots

Parcels approach RDMA memput approach

1 rank = malloc Comm Size

2 init(rank) 3 ToA S Melisc Com Fise

‘; f°§°; lf);:lsneoigoP;::Z:tlons 3 for i from 0 to Iterations

) 4 f h in Ph

5 for neighbor in Neighbors(rank, phase) 5 for meighbor in Neighbors(rank, phase)

6 recvs += IRECV(rank, phase, neighbor) 6 memput (neighbor, lco[neighbor])

7 for neighbor in Neighbors(rank, phase) 7

8 Pack(rank, phase, neighbor) 8 wait (1co[rank])

9 ISEND(rank, phase, neighbor) 9 parallel_for (computation(rank, phase))

10 WAIT_ALL(recvs)

11 unpack(rank, phase, neighbor)

12 parallel_for(computation(rank, phase)) SOV on large scale chustar P ——
-'/.Omnmmulm

RDMA memget approach I

ONergen v 2Pvead

1 rank = malloc Comm Size Srmmmmmm—

2 init(rank) Orngmi ot

3 for i from 0 to Iterations Svemgrito tveots

1 for phase in Phases R ——

5 set_lco(rank) R

6 parallel_for xRow in NeighborXRows(rank, phase) R

7 memget (xRow,1co[xRow])

8 parallel_for (computation(RowsOfA[rank], phase)) ' — ST

9 wait (xRowsLCO) o

10 where

11 on access to a remote rows of x while working on a row

12 1) spawn a thread to finish computation

13 2) on access to to any remote xRow: wait(lco[xRow])

14 3) after computation is finished: set_lco(xRowsLCO)

Active Global Address Space (AGAS)

= Problem
Global Data

= Dynamically varying load in the execution of _ .—

adaptive applications leads to uneven system

utilization and consequently limits scaling of Data ~ ‘/‘1'\
o dependency
such applications m
= Active migration of data at runtime in the Task DAG
global address space is challenging 0 1 2

= Solution
- - Global Data

= The active global address space (AGAS) allows
. |
on-the-fly relocation of global data between > !n<—¥ Task DAG

different physical localities

= |nflight parcels targeted to moving blocks are 0 1 2

3
forwarded appropriately m H Global Data

= Optimal global data redistribution is : i
determined through communication graph el e 410
partitioning

v
3+ ° Task DAG

Active Global Address Space (AGAS)

= Problem

= N-body like problems appear
in many scientific applications.
The naive solution has O(N?)
complexity, whereas the Fast
Multipole Method(FMM)
reduces this to O(N)
complexity up to any
prescribed accuracy
requirement

" Impact 935 rebalancing —e— =
= AGAS in HPX-5 enables ' rebalance time ——
asynchronous load balancing i
in FMM through active
migration of nodes in the
global spatial decomposition
tree

128 256 512 1024 2048

Cores

Demonstration of Scalability and Performance

= Problem
= Demonstration of exascale performance is not possible on current hardware
= Solution

= Demonstrate Scalability on NERSC Edison (concurrency), while showing highly-threaded
improvements on testbed systems such as NERSC Babbage and local clusters

= |mpact
= Testing shows HPX will provide DOE codes with a path forward

HPX-5 weak-scaling LULESH on 256 core

cluster HPX-5 LULESH uGNI Results
~o—MP| —€—HPX-5 0.25
/‘___‘
= 02 S 02
= ——) g —
o -
g 015 j - . 2 0.15 ﬁ g — —o
[] o
£ 01 o 0.1
o £ ~ =o=N\P| =k=HPX 2.0 =¢—HPX 2.1
o = 0
2 0.05 0.05
'- 0 O L 1 1 1 1 1 1 1 1 1 1 1 1 1 J
(SMP) 8 27 64 125 216 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
Cores Thousand
Cores

S

Demonstrations of Scalability and Performance: Wavelets

= Problem
= Dynamic, irregular, non-uniform applications are scaling constrained using conventional
parallelization techniques 2.0 Wavelet Blast Wave simulation - 100 terations, 10 levels
refinement
= Applied to hydrodynamics: 100 o2
90
arXiv:1512.00386 80
70
= Solution o S
. . g 40 ~HPX
= Asynchronous Multi-Tasking (AMT) = . —cix
20 —pe 15.35
10 M"
0 b 778 7335
1 2 4 8 16
Cores
Blast wave on Edison (Cray XC30), 10 levels of
refinement
o ~23k points/iteration, strong scaling test
2
¢
£
g 10
e
£
1
32 1024

Number of Nodes

Demonstrations of Scalability and Performance: Wavelets

= Asynchronous Multi-Tasking (AMT)

5000 B Serial ——Measured ==Perfect Scaling = rw'.os .

3500
3000

G 2500
.;8; 2000
1500
1000 —
500 [==g==a — 1

4500 l I I S i
4000 b\ ntegrator Stage __
\

\

S 6 7 8 9 10 11 12 13 14 15 16
Number of Threads

® Exploring AGAS

Blast wave on cutter, 6 levels of refinement
~4k points/iteration, strong scaling test

==simple placement

<10 policy; no AGAS
] > —*— -placement policy to
g 8 simulate AGAS
'§ 6 ~~problem motivated
g placement policy
W
E 4
-

2 r—

0

1 4 7

Number of Localities

HPCG using HPX-5

= Problem:
= High Performance Linpack performance doesn’t represent most applications

= HPCG (High Performance Conjugate Gradient) benchmark only achieves a small fraction
Linpack performance

= Solution:
= Asynchronous multi-tasking runtime systems easily enable one-sided linear algebra
operations

= Recent results:
= The below plot shows performance of SpMV (Sparse Matrix Vector multiplication).

SpMV on small cluster SpMV on Cray XC40 SpMV on Cray XC40

“=MP| Reference
Implementation

“MP| Reference
Implementation with
Overdecomposition

~Parcels

® / ~~Parcels with
10 < Overdecomposition

0 20 40 &0 0 n 128 120 1600 3200 2 128 320 1600 3200
Cores Cores

g 3 8 8

—P

g

—Parcels
Overdecomposed

GFlops
&

Parcels
10

—Parcels -
Overdecomposed -
Numa

Graph Analytics in HPX-5

= Problem

= Dynamic, irregular, data-dependent graph analytics applications generate large numbers
of small (in order of bytes) messages and extremely (vertex-level) fine-grained parallelism

e Solution
— HPX-5 consistently improves Delta-stepping Algorihm With Graph500 Input
. and PWC transport
(between versions) the 6.00E+07 P
. . ’
perforn-]ance Of ﬁnE'grall’.]ed é 5.00E+07 ---®--- with coalescing ---®--- without coalescing ’
parallelism encountered in graph E)
. £ 4.00E+07 P~
applications)
< 3.00E+07
* Recent results 3z P
2 2.006:07 —»
— Investigation of application driven E 1 ooesor Y o
. . . = 1.00E+07 — e >
scheduling to tailor the runtime to S : R
. . . 0.00E+00 — ®-TTTTTTTT@mTTIET
application needs and of coalescing 110 220 41 57 1623 3204

of parcels to decrease #Nodes, Scale

communication overheads
Performance of Delta-Stepping algorithm for Single-Source Shortest
° Impact Paths (SSSP) executed on Graph500 benchmark inputs with and
without coalescing
— Many emerging applications rely on

fine-grained data-driven parallelism

Enhancement and Exploration (external) - Reactive Material
Simulations

= Problem
= Multidisciplinary predictive science

= Solution

= Dradictun G ce Academic Alliance Program (PSAAP II)
» 3 Multidiscinlinarv Simulation Centers

C-SWARM
3 S| » Full System Vakdation Plan for Second Year Review
Trepact Top-Down Agpeoach
~ *Fhb dogical viscog D
F.vr calibrated from wsit coll computations
Comgutational Homogenuation

*Quas-Stoady ssumption
o.9q o Thermo-mechanics

»

“ookined benpact Experiment
Sy

l)

* Top-Down Approach

ILLINOIS

Shock Wave-processing of Advanced Reactive Materials

B E

Hl h Energy Ball C-SWARM Validation/UQ
hng (HEBM) Verification Discovery
Prediction ! $

Demonstration System (Ni-Al)
® Reversed ballistics Taylor impact experiment

o
Commm
3
-
.!
H

Human Brain Simulation (BlueBrain Project @ EPFL)

Dynamically adaptive software to allow simulation at
different scales:
= Point neuron level simulation (thousands/millions of neurons per node)
= Compartmental level simulation (few neurons per node)
= Biomolecular level simulation (one neuron across several nodes)

Multirate and variable time-step solvers (based on each different
mechanism) reflect better the neuronal networks behavior,
contrarily to fixed time-step solvers
= This requires a totally asynchronous programming paradigm as provided
by HPX
Hide communication and threading complexity
= Developer only focus on writing the logic; HPX handles parallelization

Transparent load balancing
= Task stealing queue allows balancing of work across threads
= Global Address Space allows memory to move to different localities to
balance work across nodes
Removal of collective communication and computation calls:

= Simulation should be a free system where computation of objects is
independent

= Suitable for simulation of objects with unpredictable execution times

HPX-5 and Brain Simulation

Distribution of branches/sections across neurons Distribution of terminal branches/sections across neurons Distribution of segments across neurons
From characterized neuron to : : : : : : : : : : : : :
compartmental model 50 N . 50 - - . 80 |)
% 40 g 40 g
= B H e 3
A. Characterized Neuron E E ER)
L 2 2
5 30 N 5 30 N =
i o} 5} y 40 ’
v
= 220 . T 20 i El
=1 = =
a a a 20 | -
B. Cable Model 10 - B 10 - *
0 | | | i O | | O H_’-l-H Il | H
0 100 200 300 400 500 0 50 100 150 200 250 0 0.5 1 1.5
number of branches/sections number of terminal branches/sections number of segments 104
C. Compartmental Model
= serial - whole neurons 1,935.83
=2 - " w) omp static - whole neurons 190.25 total time per neuron time speed up
S g {} g omp dynamic - whole neurons 120.01 serial - whole neurons 1935.83 ms 3.6049 ms 1.0x
- - N N hpx5 par for - whole neurons 113.1 omp static - whole neurons 190.25 ms 0.3543 ms 10.2x
(source: Christof Koch and Idan Segev, hpx5 for+lco - whole neurons 95.67 omp dynamic - whole neurons 120.01 ms 0.2235 ms 16.1x
Methods in Neuronal Modeling: From lons to Networks) posix - whole neurons 105.4 hpx5 par for - whole neurons 113.10 ms 0.2106 ms 17.1x
hpx5 par for - branched 106.88 hpx5 for-H(.:o - whole neurons 95.67 ms 0.1782 ms 20.2x
b5 for--1co - branched 90.54 posix - whole neurons 105.40 ms 0.1963 ms 18.4x
From compartmental model to neural circuits P o | | | hpx5 par for - branched 106.88 ms 0.1990 ms 18.1x
0 500 1,000 1,500 2,000 hpx5 for+Ico - branched 90.54 ms 0.1686 ms 21.4x

Total execution time (miliseconds)

Hardware specs: IBM machine with 40 nodes; Intel(R) Xeon(R) CPU E5-2670 0 @ 2.60GHz; 1 thread per core, 8 cores per socket, 2 sockets, 2 NUMA nodes; L2 Cache 20480 KB;
128 GB RAM; Launch command: mpirun -np 1 --mca btl “openib --map-by node ./a.out $input-data --hpx-dbg-mprotectstacks --hpx-stacksize=100000

HPX-5 enables unigue branched modality for plasticity
that is competitive for use in the core neuron benchmark.

A Hodgkin-Huxley simulation of 3.1M neurons.
(represented as points for simplicity)

mouse brain: 80M neurons; human brain: 100B neurons

Applications using or Trying HPX-5

Shock wave processing of advanced
materials

-

T - -

‘S SN B B E)
- J
- E Rl e gy

DOE NNSA DE-NA0002377 (PSAAP2)

Wavelet methods for fluid
research in conjunction with
Daniel Livescu (LANL) See also
arXiv: 1512.00386

o

MT
L .
4 ;_,_.'- = PICSAR: Laser Driven High-
Lo “ o 1 Energy Density Plasma and
DSL for linear algebra through 4 =% =4 o Accelerator Technology
DOE NNSA DE-NA0002377 (PSAAP2) iy

HPX support for LULESH through
DOE DE-SC0008809

Intel Parallel Research Kernels

= Performance plots of Stencil, Synch_p2p — which underlie a
wide range of computational science applications

MPI1 and HPX-5 Stencil 32768
100000000 Performance
—e—\IPI1 HPX-5

10000000 / 16384
[72] . ~/
& 1000000 T T
o s
] / 8192

100000 ./u
[l [l [l '] [] [] [] [] []

10000
@ 4096

1 > © % X S © N2 &
VRS A S 24 48 96 192 384 768 1536 3072 6144 12288

Cores Cores

Stencil kernel Sync_P2P kernel

Intel Parallel Research Kernels

Transpose

700000
600000

— 500000

LN
()
()
()
()
(@)

Bandwidth (MB/

200000

100000

0
24 48 9% 192 384 768 1536 3072 6144 12288

Cores

Performance plot of transpose Intel kernel

Early Popularization — Technology
Demonstrations

Incremental Delivery

1.0.0 1.2.0
0.6.0
0.5.0 110 1.3.0 200 210 220
S S SN N O S O O O
Mar 15 May 15 July 15 Sep15 Nov15 Jan16 Mar1

= Active Development and Regular Release Cycles

= Open-source Agile development
= Available at: http://gitlab.crest.iu.edu
= Nightly regressions and performance testing on 6+ supercomputers

= Seeking community engagement
= Runtime development, tools support, more applications

32

Evaluation Plans for Software Prototypes

ParalleX formal specification completed and analyzed for correctness and
completeness; available for software compliance

Completion of ParalleX feature set in HPX-5 implementation
Release of HPX-5 runtime and Photon transport layer on OpenHPC consortium

Deploy HPX-5 on diversity of platform types and scales to establish robustness

of deployability, robustness, and scalability

Derive measurements of runtime mechanism overheads by means of synthetic
micro-benchmarks

Select and port representative applications for agency mission-critical and end-

science applications to measure and compare with baseline control cases;
analyze sensitivities for projected exascale operational behavior

Validate that known and adopted programming interfaces can be fully
supported in principle by HPX-5 or determine imposed inadequacies

Work with Rice University’s Habanero-C and SNL DARMA to expand utility of
test cases.

Technology Transition Opportunities

= Share with industry partners
= Current: Cray, Intel, Micron
= Possible: AMD, ARM, HPE

= Deploy and maintain HPX-5/Photon on OpenHPC.

= |Uis founding member and member of Linux Foundation
= Update introspective policies interface for users and compiler

= Begin tutorials starting in 2017
= Tutorial documentation currently available
= Online on-demand video MOOC to be developed and released 2016

= Publish monograph with MIT Press

= |nvited to submit proposal; discussed with publisher editors

= Extend to commercial software

Lessons Learned

Dynamic adaptive computing methods exploiting runtime application and system state
information offers opportunity for potentially significant improvements in efficiency and
scalability while improving user productivity and performance portability

Problems and their formulations vary in degree of performance gain opportunities
through dynamic methods

Runtime system software is a near-term strategy to enhance parallel system performance
through overhead reduction, minimizing latency effects, avoiding contention, and
exploitation of increased parallelism

Algorithms will need to be refactored in some cases to allow much parallelism
New interface protocols will be required between compiler and runtime
OS and runtime relationship can be extended for adaptive control

Operational semantics can be used for formal specification of execution models to ensure
correctness, completeness, and compliance

Event-driven computation and synchronization can mitigate asynchrony

Global Address Space semantics yield improved programmability but impose additional
overhead implementation challenges

Advanced methods of introspection and policies require further advances

HPX-3

Higher Level APIs for Portable Performance (HPX-3

Matrix Transpose (swme, 2ak24

 Problem
— Different Architectures often require separate optimization
and codes
« Solution

— Offer a higher level C++ programming interface for HPX
that is well aligned with the modern C++ standard and

which enables full portability of code and performance
— Uniform code for GPUs and main codes Matrix Transpose (sws, sz

 Recent results
— Parallel APlIs implemented in HPX have been adopted for
the next C++17 standard

— A newly written (local and distributed) HPX matrix
transposition benchmark outperforms a similar code from
the Intel Parallel Research Kernels (based on OpenMP

and MPI) by a large margin (up to 50% faster)

— The new benchmark shows excellent performance on
different architectures (Intel X86, Xeon/Phi, and GPUs)

* Impact

— Application developers can write new code once using a
higher level API and efficiently run it on many platforms

Future Adoption of Higher Level APls (HPX-3)

= Evaluation Plans

= Measure User base

Current projects (STAR, PXFS, STORM, Parquet)

Use in global projects, like H2020, Human-Brain project, CERN
= Measure impact on open source community

Google Summer of Code

Boost

= Measure impact on standardization efforts (C++17)
= |nteraction with industry (Intel, NVidia, AMD)

= Technology Transition Opportunities
= Provide implementation and usage experiences for ongoing and future C++
standardization (labs heavily depend on C++)

HPX provide uniform local and remote parallelism APIs (parallel algorithms and data structures,
GPU integration)

HPX integrates high scalability runtimes with existing C++ application infrastructures

= Work with international communities and companies

Future Adoption of Higher Level APls (HPX-3)

= Lessons learned

= Task based parallelism can provide a most efficient technological bases for any
kind of higher level parallelism constructs in C++
= Higher level APIs in C++
= Simplify writing application code
= Outperform existing programming models (OpenMP, MPI, CUDA)
= Ensure portability of code and performance across heterogeneous platforms
= Runtime adaptivity is key for efficient applications
= Gives emergent properties supporting high scalability

DEMOS

Technology Marketplace Demos - Demo 1

Live demo shows the performance scalability of HPX-5 integrated
with the Autonomic Performance Environment for Exascale
(APEX) running LULESH application

300 4 5000
é’ 4 4000
& BOOH 5‘3.)
o
g | 4 3000 o«
400 H
LR 4 2000
2 1000
0 0
Tim
POWEN =—
thread cap ———
PosVel _sends_action mem
PosVel_result_action mew
othel
Honoll_sends_action
_SBN3_sends_action
SBN3_result_action
_initDomain_action M
dvancelomain_action N

Demo2 - Dynamic Adaptive Nature of the Runtime

Using the fast multipole method (FMM) application, this visualization shows the
difference between remote communication activity before and after dynamic
rebalancing effected by the active global address space (AGAS) in HPX-5.

Demo2 — LULESH Visualization

This visualization shows the benefit of asynchronous behavior from the over-
decomposition in HPX-5 for LULESH application

[|]
u | o
"-N"ﬂfﬂ"ﬂﬂd’-ﬁ-
" . i T R
g g C R 'II;‘I::'E‘Q_.E‘
i T 5 g
.. N E B g *ﬁrf*ﬁ;ﬂiﬂ L
o b W% \it-'nh
. = Nt
g "w-"*{».,
[| |
] [

Demo3 — Demonstration of HPXCL

Demonstrates HPXCL, a scalable OpenCL API for distributed systems, on top of LSU's
HPX-3 (a scalable C++ runtime system), with distributed Mandelbrot renderer

Demo 4 — Xstack Integration demo

LULESH application running on KNL Pre-release hardware with the entire integrated
software stack (LXK, APEX, RCR and HPX-5)

__task create(), starting task on cpu id=201

task create(), starting task 203 on cpu_id=202
__task create(), starting task 204 on cpu id=203
__task create(), starting task 205 on cpu id=204
__task create(), starting task 206 on cpu id=205
__task create(), starting task 207 on cpu_ id=206
__task create(), starting task 208 on cpu_id=207
__task create(), starting task 209 on cpu id=2608
__task create(), starting task 210 on cpu id=2609
__task create(), starting task 211 on cpu id=210
__task create(), starting task 212 on cpu id=211
__task create(), starting task 213 on cpu id=212
__task create(), starting task 214 on cpu id=213
__task create(), starting task 215 on cpu_id=214
__task create(), starting task 216 on cpu id=215
__task create(), starting task 217 on cpu_id=216
__task create(), starting task 218 on cpu id=217
__task create(), starting task 219 on cpu_id=218
__task create(), starting task 220 on cpu id=219
__task create(), starting task 221 on cpu_id=220
__task create(), starting task 222 on cpu id=221
__task create(), starting task 223 on cpu id=222
__task create(), starting task 224 on cpu_id=223
__task create(), starting task 225 on cpu id=224
__task create(), starting task 226 on cpu_id=225
__task create(), starting task 227 on cpu id=226
__task create(), starting task 228 on cpu_id=227
__task create(), starting task 229 on cpu id=228
__task create(), starting task 230 on cpu_id=229
__task create(), starting task 231 on cpu id=230
__task create(), starting task 232 on cpu id=231
__task create(), starting task 233 on cpu id=232

<8>(init_task) Number of domains: 64 nx: 15 maxcycles: 400 core-major ordering: 1
<8>(init_task.thread_03) power : 0.782609, ma: 0.518519, cap: 230, min: 0.695652, max: 1.000000, no change.

Knights Landing |

http://xstack.sandia.gov/xpress

