CORVETTE: Program Correctness, Verification, and Testing
for Exascale

Koushik Sen (PI) James Demmel, University of California at Berkeley
Costin lancu, Lawrence Berkeley National Laboratory

http://crd.Ibl.gov/organization/computer-and-data-sciences/future-technologies/projects/corvette/

The goal of this project is to provide tools to assess the correctness of parallel programs written
using hybrid parallelism. There is a dire lack of both theoretical and engineering know-how in the area
of finding bugs in hybrid or large scale parallel programs, which our research aims to change. As intra-
node programming is likely to be the most disrupted by the transition to Exascale, we will emphasize
support for a large spectrum of programming and execution models such as dynamic tasking, directive
based programming, and data parallelism. For inter-node programming we plan to handle both one-sided
(PGAS) and two-sided (MPI) communication paradigms.

We aim to provide tools that identify sources of non-determinism in program executions and make
concurrency bugs (data races, atomicity violations, deadlocks) and floating-point behavior reproducible.

In order to increase the adoption of automatic program bug finding and exploration tools, novel tech-
niques to increase precision and scalability are required. Precision implies that false alarms/positives
are filtered and only the real problems are reported to users. During our research we will explore state-
of-the-art methods that use dynamic program analysis. Since dynamic analysis monitors the program
execution the resulting tools are precise, at the expense of scalability. Current approaches exhibit 10X-
100X runtime overhead: it is our goal to provide precise tools with no more than 2X runtime overhead
at large scale. We will also research techniques to maximize the tool efficacy on a time budget, e.g. no
more than 10% overhead.

We will also research novel approaches to assist with program debugging using the minimal amount
of concurrency needed to reproduce a bug and to support two-level debugging of high-level program-
ming abstractions (DSLs). Furthermore, we plan to apply the combination of techniques developed for
bug finding to provide an environment for exploratory programming. We will develop tools that allow
developers to specify their intentions (not implementation) for code transformations and that are able to
provide feedback about correctness. Besides code transformations, we plan to allow for automatic algo-
rithmic tuning, i.e. transparently choosing at runtime the best implementation with respect to a metric
from a collection of algorithms. As an initial case study, we will apply this methodology to determine
program phases where double floating-point precision can be replaced by single precision.

1 Automated Bug Finding

Summary: During the review period we have completed the first publicly available implementation of
a data race detector for distributed memory programs that tracks all memory references. The goal of
our implementation is to provide low overhead with good program coverage when running at scale. We
propose two techniques to improve the scalability of data race detection in UPC programs: 1) hierarchical
function and instruction level sampling; and 2) exploiting the runtime persistence of aliasing and locality
in UPC applications. The results indicate that both techniques are required in practice and we analyze
programs running on 2048 cores with less than 50% additional overhead.

Overhead
Bench LoC Time(s) #Races NL HA.5 1A FAO 1
guppie 271 19.070 2+0 54.9% 54.2% 53.7% DNF 74.9%
psearch 803 0.697 3+2 2.48% 10.8% 666% 8.01% 6490%
BT 3.3 9698 189.48 7+3 0.574% 1.16% 77.6% DNF -
CG24 1654 39.573 0+1 1.09% 27.6% 57.6% DNF 2579%
EP2.4 678 54.453 0 -0.618% 0.805% 2.09% 4.74% 111%
FT 2.4 2289 62.663 2+0 0.601% 30.1% 121% DNF 2744%
1S2.4 1R36 5.130 0 0.376% 119% 159% DNF 1201%
LU33 6348 155.997 0+44 -0.425% - 75.7% DNF -
MG 2.4 2229 18.687 2+4 0.336% 176% 632% DNF 2020%
SP3.3 5740 247.937 10+3 0.160% 0.861% 29.1% DNF -

Table 1: Statistics for the NAS Parallel Benchmarks class C, guppie and psearch running on 16 cores. We report the races found as A + B,
where A represents the number of races detected by the original UPC-Thrille tool (column NL: No-Local) and B represents the additional
number of races detected with our extensions. Some execution overheads are omitted (-), due to configuration errors.

Attaining good performance and efficacy on contemporary and future large scale High Performance
Computing systems requires using hybrid programming models: OpenMP+MPI, UPC+MPI, Intel TBB
+ MPI or OpenMP+UPC. With multiple levels, intra-node parallelism is usually exploited using shared
memory programming models, while inter-node parallelism is exploited using message passing or shared
memory abstractions. Bugs due to non-deterministic execution and conflicting memory accesses are
fairly common and notoriously hard to detect in a parallelism rich environment. Previous work demon-
strates the ability of dynamic program analyses to find concurrency bugs (data race, atomicity violations,
deadlock) in shared memory programs. Dynamic program analyses have been also used to find heisen-
bugs in distributed memory programs: DAMPI [9] for MPI wildcard receives and UPC-Thrille [8] for
data races in Unified Parallel C [6].

Data race detectors for shared memory programming trace individual memory references (load/store
instructions) and reason about program semantics using a centralized analysis. The implementations
are heavily optimized to reduce the instrumentation overhead and reportedly function with overhead
lower than 10x. Bug finding for distributed memory programming models is made scalable by using
a distributed analysis, but the current approaches illustrated by DAMPI and UPC-Thrille track only the
calls into communication libraries. Thus, distributed memory tools need to be extended with tracking of
memory references in order to handle hybrid programming. Furthermore, while acceptable when testing
programs on workstations, the current overhead of dynamic program analyses is hard to stomach at the
contemporary HPC concurrencies of tens of thousands of cores. Large scale analyses face the additional
challenge to provide the lowest achievable overhead while still providing good coverage. While the
adoption criteria for shared memory tools is “acceptable overhead”, more stringent optimality criteria
are desired at scale.

We have completed the first complete dynamic analysis for distributed memory programs able to
track both memory references and communication calls. We extend the UPC-Thrille data race detection
tool with tracking of individual memory references and discuss techniques to achieve low overhead for
scientific applications running at scale. The results are validated for implementations of the NAS Parallel
Benchmarks [5], as well as other fine-grained dynamic programming and tree search applications. We
believe that our findings are widely applicable to any tool for data race detection in Partitioned Global
Address Space languages: Chapel, Titanium, Co-Array Fortran, X10.

1.1 Scalable Data Race Detection

UPC-Thrille implements a dynamic program analysis running in two phases. In the first phase the pro-
gram is executed with additional instrumentation and data about memory accesses, communication and
synchronization operations is gathered and analyzed. For the purposes of this paper we distinguish three

Overhead for CG class A 16 cores Scalability of analysis on MG

40
35
30
25
20
15
10

5

NL-D

~, HAO-D
Binstrument HA.5-D
Bcomm 1A-D
Bcomp TN
—&—HAO0-C

o HA.5-C
® * * :é: * - N —a—IA-C
16 32 64 128 256 512 1024 2048
ES | cores

Bprogram

Runtime normalized to "empty" run
BN WA U BN ® O
|

NL HAO HA.S IA HO FO

Figure 1: Breakdown of data race detection overhead running on 16 cores (left). Scalability of the different sampling methods on NPB 2.4 MG,
classes C and D (right).

types of overhead: 1) instrumentation overhead is introduced by the checks to prune the non-interesting
data accesses; 2) computation overhead, by the operations on internal data structures to manage the ac-
cesses and compute conflicting accesses; and 3) communication overhead, by the exchange of conflicting
accesses between threads.

Analysis Overhead: The most widely used technique to reduce overhead is sampling of the program ex-
ecution. Tools for shared memory use instruction level sampling while the distributed memory tools [8, 9]
implement its equivalent by sampling the communication operations. For shared memory, Marino et
al [7] recently introduced LiteRace which coarsens the granularity of the sampling at function bound-
aries: functions are compiled in two versions, instrumented and uninstrumented, each version being
selected at runtime using heuristics. LiteRace showed better scalability and coverage than instruction
level sampling when applied on several Microsoft programs, as well as Apache and Firefox.

We have experimented with both instruction level sampling and function level sampling on a Cray
XE6 system composed of nodes containing two twelve-core AMD MagnyCours 2.1 GHz processors.
The results in Table 1 indicate that instruction level sampling (IA) performs better than (FA) function
level sampling for scientific programs. Instruction level sampling adds runtime overhead as high as 65X
while many runs using function level sampling did not terminate, even when instrumenting only the first
execution of a function (FAO). This result contradicts the trends reported for LiteRace and it is caused by
a combination of two factors: 1) determining the locality of a reference is expensive in PGAS programs;
and 2) scientific programs have long running loops, with billions of memory accesses per invocation
in our benchmarks. Our results also indicate that in most settings instrumentation overhead dominates
the computation and communication overhead during the analysis. The typical behavior is illustrated in
Figure 1 (left). Note that with function sampling (F.5, FO) the computation overhead increases due to the
very large number of memory locations accessed in loops.

Reducing Overhead: For every memory reference there are two sources of runtime overhead. Instru-
mentation overhead is introduced to decide whether the reference should be recorded and computation
overhead is introduced when recording the reference in the tool internal data structures. We employ
a combination of techniques to improve the analysis performance: 1) we use program semantic infor-
mation such as aliasing to prune un-interesting memory accesses; and 2) we use a hierarchical sampling
approach where instrumentation is dynamically controlled both at the function level and at the instruction
level.

The first optimization reduces the overhead of instrumentation by exploiting the insight that aliases
are persistent in PGAS programs: once one is created it will point in the same memory region (private or
global) for a long period of time. Using this we can eliminate the overhead introduced by looking up the

physical memory layout inside the language runtime. Adding the aliasing heuristics to any of the tool
methods greatly improves performance. For example, the overhead of instruction sampling () is reduced
from 3600% to 105% with (IA) for CG class A running on 16 cores. The overhead of hierarchical
sampling (H) is reduced from 2550% with (H.5) to 99% with (HA.5) and from 294% with (HO) to 17%
with (HAO). The lowest overhead of data race detection is obtained by the HA approach.

Function sampling ((F) or (FA)) is faster than instruction sampling ((I) or (IA), respectively) for
problems using small datasets, such as class A of the NAS Parallel Benchmarks. When increasing the
data set size to B, C and D, function sampling in any flavor does not terminate, while the highest overhead
observed for instruction sampling is 65 x. From all benchmarks considered, the only exception happens
for psearch and EP where (F) is roughly twice as fast as (I). psearch is a tree search benchmark which
performs a constant and small amount of work per function, independent of the problem size: this is a
common characteristic to many commercial applications. EP is an “Embarrassingly Parallel” benchmark
where no global memory accesses are made and thus none need to be tracked. The performance reversal
observed for most benchmarks contradicts the common intuition that function sampling performs better
than instruction sampling.

Hierarchical sampling (H) performs better than both instruction sampling (I) and function sampling
(F) as it reduces all three type of overhead: instrumentation, computation and communication. With
hierarchical sampling we observe slowdowns as high as 20 x which is still unacceptable when running
at scale. Applying the aliasing heuristic reduces the overhead of data race detection for both instruction
level and hierarchical sampling. The maximum slowdown observed by (IA) is 10x while the maximum
slowdown for (I) is 65 x. Similar results are observed for (HA) when compared to (H).

1.2 Results

Figure 1 (right) shows the performance of our approach when performing strong scaling experiments for
the classes C and D of the MG NAS Parallel Benchmark. For all experiments, the lowest overhead is
introduced by the (HA) configuration and we are able to find all the races with less than 50% runtime
overhead when running up to 2048 cores. In the case of the NAS Parallel Benchmarks class C on 16
cores, the weighted average overhead for all the benchmarks with (HA.5) was 11.9%.

For scalable data race detection, we needed to combine the two techniques: hierarchical sampling
and aliasing heuristics. In the scalable versions of (IA) and (HA), the computation overhead is small.
At large scale the communication overhead is also small due to the techniques presented in [8]. Overall,
instrumentation overhead contributes the most to the slowdown caused by data race detection.

Races Found: In [8] we present a detailed discussion of the races found in the current program work-
load. Our extended implementation finds all these and, in addition, uncovers several other races. For a
summary please see Table 1. For example, we detect a previously unknown race in NAS CG introduced
by the presence of aliasing: memory is initialized using “local” pointers and distributed without synchro-
nization to other threads using global pointers. In NAS BT, LU, and SP we uncover 50 additional races.
Four of these races are real and confirmed by the tool; they occur when executing custom synchronization
code similar to:
signal(v=1); | wait(while(v ==0););.

The remaining new data races are caused by data references separated by custom synchronization code.
Identifying races in the presence of custom synchronization code is a common limitation of data race
detection tools.

2 Automated Precision Tuning of Floating-Point Programs

Summary: During the review period we have started the development of an infrastructure to automat-
ically adjust the floating point precision required during application execution. We have implemented
an analysis pass in LLVM that given as input a floating point program it will propose modifications to
reduce the precision of the program variables, i.e. from double to float. Preliminary experients
applying the tool to the GNU Scientific Library (GSL) indicate up to 10% execution time improvements.

The use of floating-point applications has been growing rapidly over the past few years. Unfortu-
nately, testing and debugging floating-point programs is a difficult task given the large variety of nu-
merical errors that can occur in these programs, including extreme sensitivity to roundoff, incorrectly
handled exceptions, and nonreproducibility across machines or even across runs on the same machine.
Furthermore, most programmers are not experts in floating point, which makes testing and debugging
these applications particularly challenging. One common practice in floating-point programs is to use the
highest available precision. Using the highest available precision has its own disadvantages: it is more
expensive in terms of running time, storage, and energy consumption.

We are developing automated testing and debugging techniques to recommend the lowest precision
that can safely be used in each part of a program. We expect the non-expert developer to write code
in the highest precision and to optionally specify accuracy requirements. Our tool then recommends a
safe reduction in precision, automatically determining how little precision each part of the computation
requires in order to produce an accurate enough answer without exceptions. At a high level, our approach
consists of creating multiple variants of the program, each using different precision. We use the delta-
debugging algorithm [4] to find a variant that uses less precision and complies with the developer’s
accuracy requirements.

2.1 Framework Components

We have designed and implemented a tool that automatically tunes the precision of a program given an
input set. Our tool consists of four different components (see square boxes in Figure 2):

Creating Search File The first component creates the search file for the program whose precision is to
be tuned. The search file contains a listing of the floating-point variables (and operators) in the program
along with the set of floating-point types to be explored (e.g., float, double, and long double).
The input to this component is the program under analysis. If the program contains any functions whose
precision should not be modified, then the name of those functions can also be provided as input. Our
framework is built using the LLVM compiler infrastructure [3], thus our tool requires the program to be
compiled into LLVM bitcode form in order to apply our analysis.

Delta Debugging Algorithm The second component uses the delta debugging approach [4] to system-
atically search the space of possible program changes and produce a configuration set of changes to apply.
Program changes include: (1) changing the precision of floating-point program variables, (2) changing
the precision in which floating-point arithmetic operations are performed, and (3) choosing between
more/less precise implementations of a given function. This component produces a configuration file
that gives a type assignment for all floating-point variables and operators (if any) in the program.

Program Transformations We have identified a set of program transformations that need to be per-
formed when changing the type of variables and operators in a program at the LLVM bitcode level. In
order to apply these transformations, we require the LLVM bitcode for the program under analysis and
a configuration file produced by the delta debugging algorithm. A modified bitcode file is produced,
which reflects the type assignment given in the configuration file. For example, let variables x and y be
of type 1ong double in an original program P. A type configuration file could assign type double
to variable x and type float to variable y. In this case, a program P’ is produced where variables x
and y have the types double and float, respectively.

Determining Type Assignment Validity To determine whether a type configuration is a valid config-
uration, we run the modified program and compare the result against the expected result. The expected
result is the value (or values) obtained by running the original program in a given input. If a threshold
is provided by the programmer, then it is taken into account when comparing the results. The outcome
of the comparison is provided as feedback to the delta debugging algorithm, which will decide whether
a new type configuration should be produced. If so, the process repeats. Eventually, the delta debugging
algorithm will choose a valid type configuration. We accurately log and compare floating-point values.

2.2 Preliminary Results

We have completed an end-to-end implementation of the tool. The tool has been implemented in C, C++
and Python. We use LLVM 3.0 to implement our program transformations.

We initially applied the analysis to a set of small programs (50-500 LOC) in which experts had
observed that a less precise program would still produce the expected results while improving perfor-
mance significantly. These programs were originally written in C, Fortran and Matlab. We manually
translated Fortran and Matlab programs into C. For each of these programs, experts provided the ideal
type configuration, which was found manually. Figure 3 shows one of these programs, which calculates
the arc length of a function. The program is originally written in the highest available precision (Long
double). Figure 4 shows the less precise program suggested by our tool. Note that this configuration
matched the ideal configuration provided by experts. Our tool took only 4 seconds to find this type
configuration automatically, which lead to a 10% speedup with respect to the original program. The
experiments were run on a 2.9 GHz Intel processor machine with 16 GB RAM.

sjuauodwo)) yJomawes] [9AT-Y3Iy g 231

‘wyyuobly buibbngeq eyeq
0} %0eqpas) 9pIAOId "S)Nsal a1edwod
pue weiBoid pawojsuel) ay) uny

s)nsay aiedwo) pue uny m

‘uoneinBiyuod

adA) uasoyo sy J0a|ye1 0} weiboid ay) wiojsuel]

-

welboid
pawuojsuel]

-

jinsey

suoneuLiojsuel|
weiboid

_ uoisioald
weiboiy pasodoid

uoneinbyuo)
adAl v

wyobly BuibBngaq eyeq

uosuedwo)

‘weubouid ayy u siojesado
pue sajqeLeA ay) Joj uoneinBlyuod adA} e 8sooy)

‘sjuswubisse
adAy ajqissod ypm Buoje weiboud sy} ui siojesado
|eUONE[aI PUE DBWYLE ‘sa|qeLeA Julod-Buneol4

3|14 uoneinbyuo)
adA] yosess sjeald

9podyig WATT

weibold
leuibuo

1 #include <math.h>
2 #include <stdio.h>

3
4 long double fun(long double x) {
5 intk,n=5;

6 long double t1, d1 = 1.0L;

;

8

9

t1 =x;
10 for(k=1;k <=n;k++) {
11 dl =2.0 xdf;
12 t1 =1 + sin (d1 % x) / d1;

14 returnti;

15 }

18 int main(int argc, char sxargv) {
19 inti, j, k, n=1000000;

20 long double h, t1, t2, dppi, ans = 5.795776322412856L;

21 long double s1, threshold = 1e—14L;

2
23

24

25 t1=-1.0;

26 dppi = acos(t1);
27 s1=0.0;

28 t1=0.0;

29 h=dppi/n;

30

3t for(i=1;i<=n;i++){
32 t2 = fun (i * h);

33 s1 =s1 +sqrt (hxh + (12 — t1)%(t2 — t1));

34 t1 =12;
35}

37 //final answer is stored in variable s1
38 return O;

Figure 3: Original Program

1 #include <math.h>
2 #include <stdio.h>

3

4 double fun(double x) {

5 intk,n=5;

6 double t1;

7 float d1 = 1.0f; // double before
8
9

t1 =x;
10 for(k=1;k <=n;k++) {
11 dl =2.0 xdf;
12 t1 =11 + sin (d1 % x) / d1;

14 returnti;

15 }

18 int main(int argc, char *xargv) {
19 inti, j, k, n=1000000;
20 double h, t1, t2, dppi;

21 float ans = 5.795776322412856f; //double before

22 long double s1;

23 float threshold = 1e—14f; // long double before

24
25 t1=-1.0;

26 dppi = acos(t1);
27 s1=0.0;

28 11=0.0;

29 h=dppi/n;

30

3t for(i=1;i<=n;i++){
32 t2 = fun (i * h);

33 s1 =51+ sqrt (hxh + (12 — t1)%(t2 — t1));

34 t1 =12;
35}

37 //final answer is stored in variable s1
38 return O;

Figure 4: Precision-Tuned Program

Table 2: Number of Load, Store, and Arithmetic instructions executed and speedup for GSL programs

Loads Stores Arith Ops
GSL Program F D LD F D LD F D LD Speedup %
intro original 0 560 13 0 218 7 0 359 1 -
intro new 63 497 11 54 164 7 1 358 1 5.34 (1.05x)
cdf original 0 275 353 0 129 333 0 152 4 -
cdf new 83 192 353 30 99 333 6 146 4 84.49 (6.05x)
roots original 0 721 35 0 352 30 0 190 1 -
roots new 122 599 35 62 290 30 19 171 1 8.47(1.09x)

We have recently compiled the entire GNU Scientific Library (GSL) [2] into a single LLVM bitcode
file. Table 2 shows preliminary results for three of the test programs included with the library (intro.c,
cdf.c and roots.c). Running our analysis on these programs shows speedup from 5.34% to 84.49% when
tuning the precision of the library. Our goal is to complete a detailed study that includes more GSL test
programs, and also to apply our analysis to real-world clients of the GSL library to assess the impact of
precision tuning in larger and more complex floating-point programs. After we finish these experiments,
we are planning to compile CLAPACK [1] into LLVM bitcode to apply our precision-tuning analysis to
its extensive regression test suite. We also plan to apply our analysis to the Gyrokinetic Toroidal Code
(GTC) code base from the Lawrence Berkeley National Laboratory.

References

[1] E. Anderson, Z. Bai, J. Dongarra, A. Greenbaum, A. McKenney, J. Du Croz, S. Hammerling, J. Dem-
mel, C. Bischof, and D. Sorensen. Lapack: a portable linear algebra library for high-performance
computers. In Proceedings of the 1990 ACM/IEEE conference on Supercomputing, Supercomputing
’90, pages 2—11, Los Alamitos, CA, USA, 1990. IEEE Computer Society Press.

[2] GSL Project Contributors. GSL - GNU scientific library - GNU project - free software foundation
(FSF). http://www.gnu.org/software/gsl/, 2010.

[3] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Lifelong Program Analysis
& Transformation. In Proceedings of the 2004 International Symposium on Code Generation and
Optimization (CGO’04), Palo Alto, California, Mar 2004.

[4] Andreas Zeller and Ralf Hildebrandt. Simplifying and isolating failure-inducing input. /IEEE Trans.
Software Eng., 28(2):183-200, 2002.

[5] D. Bailey, T. Harris, W. Saphir, R. Van Der Wijngaart, A. Woo, and M. Yarrow. The NAS Parallel
Benchmarks 2.0. Technical Report NAS-95-010, NASA Ames Research Center, 1995.

[6] W. W. Carlson, J. M. Draper, D. E. Culler, K. Yelick, and K. W. E. Brooks. Introduction to UPC and
Language Specification, 1999.

[7] D. Marino, M. Musuvathi, and S. Narayanasamy. LiteRace: Effective Sampling for Lightweight
Data-Race Detection. In PLDI, 2009.

[8] C.-S. Park, K. Sen, P. Hargrove, and C. Iancu. Efficient Data Race Detection for Distributed Memory
Parallel Programs. In Supercomputing (SC11), 2011.

[9] A. Vo, S. Aananthakrishnan, G. Gopalakrishnan, B. R. d. Supinski, M. Schulz, and G. Bronevetsky.
A Scalable and Distributed Dynamic Formal Verifier for MPI Programs. In Supercomputing (SC10),
2010.

10

