CORVETTE: Program Correctness,
Verification, and Testing for Exascale

Pl: Koushik Sen, UC Berkeley
coPl: James W. Demmel, UC Berkeley
coPl: Costin lancu, LBNL

Post-doc and students
Cindy Rubio Gonzalez, Chang-Seo Park, Ahn Cuong Nguyen

Correctness Tools for HPC

Dire lack of theoretical and engineering know-how

Overall as a community, we are not very
sophisticated when using testing and correctness
tools

— How many of you have a “Test Engineer” or a “QA Engineer’
position posted?

)

— How many of you know of Purify, Coverity, or SilkTest?

There are very good reasons for the status quo
— Sociological — we like hero programmers
— Practical — hero programmers can find bugs
* Serial code between two MPI_... calls

Things are changing

Motivation

- High performance scientific computing
— Exascale: O(10°) nodes, O(103) cores per node
— Side-effects through global address spaces
— Unstructured parallelism and dynamic tasking
— Non-blocking, highly asynchronous behavior

- Correctness challenges

— Hard to diagnose correctness and performance bugs
— Data races, atomicity violations, deadlocks ...

— Scientific applications use floating-points: non-determinism
leads to non-reproducible results

— Numerical exceptions can cause rare but critical bugs
— hard for non-experts to detect and fix
— existing compilers and analyses are not good at floating-point

Goals

Correctness tools for parallel programs written
using hybrid parallelism: OpenMP+MPI, UPC+MPI,
OpenMP+UPC

Testing and Verification

— ldentify sources of non-determinism in executions

— Concurrency bugs include data races, atomicity violations, non-
reproducible floating point results

— Develop precise and scalable tools with < 2x run-time overhead at
large scale
Debugging
— Use minimal amount of concurrency to reproduce bug
— Support two-level debugging of high-level abstractions

— Detect causes of floating-point anomalies and determine the
minimum precision needed to fix them

l. Testing and Debugging Large-
Scale Parallel Programs

def/use data race

In Knapsack (dynamic programming)

int build_table (int nitems, int cap, shared int *T, shared int *w, shared int *v) {
int wj, vj;
wj = w[0];
vj = v[0];
upc_forall(int i 0; 1 < wj; 1++; &T[1])
T[i] = 0;
upc_forall(int i = wj; 1 <= cap; i++; &T[i])
T[]l = vj;
upc_barrier;

}

int main(int argc, char** argv) {

upc_forall(i = 0; i < nitems; i++; i) {
weight[i] = 1 + (lrand48()%max_weight);
valuel[i] 1 + (Trand48()%max_value);

}

best_value = build_table(nitems, capacity, total, weight, value);

Scalable Testing of Parallel Programs

* Hybrid Parallel Programming is hard
— Bugs happen non-deterministically
— Data races, deadlocks, atomicity violations, etc.

* Goals: build a tool to test and debug concurrent
and parallel programs

— Efficient: reduce overhead from 10x-100x to 2x
— Precise
— Reproducible
— Scalable
* Active random testing

Active Testing

* Phase 1: Static or dynamic analysis to find
potential concurrency bug patterns

— such as data races, deadlocks, atomicity violations
* Phase 2: “Direct” testing (or model checking)

based on the bug patterns obtained from
phase 1

— Confirm bugs

Active Testing:
Predict and Confirm Potential Bugs

* Phase I: Predict potential bug patterns:
— Data races: Eraser or lockset based [PLDI'08]

— Atomicity violations: cycle in transactions and happens-before
relation [FSE’08]

— Deadlocks: cycle in resource acquisition graph [PLDI’09]

— Publicly available tool for Java/Pthreads/UPC [CAV’09]

— Memory model bugs: cycle in happens-before graph [ISSTA’11]
— For UPC programs running on thousands of cores [SC'11]

* Phase Il: Direct testing using those patterns to
confirm real bugs

Challenges for Exascale

Java and pthreads programs
— Synchronization with locks and condition variables
— Single node

Exascale has different programming models
— Large scale

— Bulk communication

— Collective operations with data movement

— Memory consistency

— Distributed shared memory

Cannot use centralized dynamic analyses
Cannot instrument and track every statement

10

Summary of Challenges

= Challenge 1: Scalability with LOCs
" Challenge 2: Scalability with input size
» Challenge 3: Scalability with cores

11

Finding Data Races in UPC

= THRead Interposition Library and Lightweight
Extensions (THRILLE): Active Testing framework for
UPC

= Download available at
http://upc.lbl.gov/thrille.shtml

" Implementation of race detector and tester for
programs written in PGAS style

" Instrument load/stores to local heap
" Instrument load/stores to global heap
®* |Instrument bulk transfers (upc memcpy)

" Track fine-grained synchronization (locks) and bulk
synchronization (single- and split-phase barriers)

12

Challenge: Scalability with Input

" Sources of overhead
" Tracking memory references (Instrumentation)
= Reasoning on collected data (Data Management)

Overhead for CG class A 16 cores Overhead for CG class D 2K cores
40 4
30 = 3
25 "- é Binstrument 25 Binstrument
20 é Bcomm 2 Bcomm
15 é Bcomp 1.5 @comp
10 é B program 1 Bprogram
nn
I P “IZE- .
NL HAO HAS5 1A HO FO H5 F5 | NL HAO

13

Solution: Scalability with Inputs

" Reducing instrumentation overhead
through sampling

State-of-the-art function level sampling
does NOT work

Instruction level sampling is slow

Novel hierarchical sampling approach
provides best performance

Alias based pruning

14

Solution: Scalability with Cores

= Per task memory access traces are collected and
exchanged during execution (alltoallv)

= Novel distributed algorithm using barrier aware may-
happen in parallel analysis

= Novel use of efficient data structures - Interval skip lists

= Analysis is carefully overlapped with communication of
memory traces

T1 T2 T1 T2 T1 T2
barrier barrier notify notify notify notify
barrier barrier wait wait wait wait

notif notif

access access accesg Y
barrier barrier notify notify wait wait

. _ notify notify
barrier barrier wait wait wait wait

Shared access between barriers Shared access after wait Shared access after notify 15

Runtime normalized to "empty" run

Scalability of analysis on MG

Yo

A~

.\°°

J

~

~

(o)}

~

o

I

w

[y

// ﬁ_\ﬁ\\\

N

iéﬂ:#;v

[HY
_
o ®

32

cores

1024

2048

—+—NL-D
—©—HAO-D
—7¢HA.5-D
—4—1A-D
—+—NL-C
—O—HAO0-C
—»—HA.5-C

—4—1A-C

16

Results

Overhead (%)

NL HA.5 A FAO
guppie 271 19.070 2(2)+0(0) 549 542 537 DNF 74.9
psearch 803 0.697 3(1)+2(2) 248 10.8 666 8.01 6490
BT3.3 9698 189.48 7(0)+3(1) 0574 1.16 776 DNF -
CG24 1654 39573 0(0)+1(1) 1.09 27.6 576 DNF 2579
EP 2.4 678 54.453 0(0)+0(0) -0.618 0.805 2.09 474 111

FT2.4 2289 62.663 2(2)+0(0) 0.601 30.1 121 DNF 2744
1S 2.4 1426 5130 0(0)+0(0) 0.376 119 159 DNF 1201
LU3.3 6348 155.997 0(0)+24(2) -0.425 - 75.7 DNF ;

MG24 2229 18687 2(2)+4(0) 0.336 176 632 DNF 2020

SP 3.3 5740 247.937 10(0)+3(1) 0.160 0.861 29.1 DNF -

Races: A(B) + C(D), where A represents the number of races detected by the original UPC-Thrille tool (NL) with B of them confirmed, and C represents the additional number of races detected with
our extensions (HA.5) with D of them confirmed through phase 2

KEY FOR VARIANTS

NL: no instrumentation on local accesses (SC’11) / H: hierarchical sampling / I: instruction-level sampling only / F: function-level sampling only
A: indicates the use of the persistent alias heuristic

(0 or .5): Back-off factor for function-level sampling (0 means only first invocation of functions sampled)

< 50% slowdown up to 2K cores with opt.
17

Il. Debugging and Tuning
Floating-point Programs

18

Example (D.H. Bailey)

m Calculate the arc length of the function g defined as

g(x)=x+) 2 ¥sin(2"-x), over (0,x).
0<k<5

m Summing for xx € (0,7) divided into n subintervals

VI + (90 +h) —g(h))?,
with h=m/nand xx = k - h. If n=1000000, we have

result

5.795776322412856 (all double-double) ——> slower
= 5.795776322413031 (all double)

= 5.795776322412856 (only the summand is in double-double)

19

Example (D.H. Bailey)

m Calculate the arc length of the function g defined as

g(x)=x+) 2 ¥sin(2"-x), over (0,x).
0<k<5

How can we find a minimal set of code fragments whose
precision must be high?

VI +(9(x+ h) — g(h))?,

with h=m/nand xx = k - h. If n=1000000, we have

result

5.795776322412856 (all double-double) ——> slower
= 5.795776322413031 (all double)

= 5.795776322412856 (only the summand is in double-double)

20

Why do we care?

* Usage of floating point programs has been growing rapidly
— HPC
— Cloud, games, graphics, finance, speech, signal processing
 Most programmers are not expert in floating-point!
— Why not use highest precision everywhere
* High precision wastes
— Energy
— Time

— Storage

21

What we can do?

 We can reduce precision “safely”

— reduce power, improve performance, get better answer

 Automated testing and debugging techniques
— To recommend “precision reduction”
— Formal proof of “safety” can be replaced by concolic testing

* Approach: automate previously hand-made debugging
— Concolic testing
— Delta debugging [Zeller et al.]

22

Non-expert developer usage scenario

* Developer writes code in highest precision
* Developer specifies accuracy requirements

— In the absence of such requirements, consider inaccuracies that could
lead to exceptions

— Exceptions due to the use of low precision

* Ourtool
— Proposes “safe” precision reduction
— Uses concolic testing to gain safety confidence
— Expect to run on 10K LOC, but modular

23

Delta Debugging to Propose Precision Reduction

v

Double precision

resulty

24

Delta Debugging to Propose Precision Reduction

v

Double precision

Single precision

resulty

result

> |resulty-results| > 7

25

Delta Debugging to Propose Precision Reduction

resulty

V| Double precision |

v [[wixeabricii] NE———r
result

X [sngerechion ¥ Iresityresitl >+

resultg
26

Delta Debugging to Propose Precision Reduction

P |resulty-resulty| < 7

27

Delta Debugging to Propose Precision Reduction

~.
~.
~q
~,
~.
~.
~,
~.
~.
S
~.
~,
S
~.
~.
~.
~.,
~
~,
~,
~.
~,
~.
~
~,
~.
~.
S
~.
~.
~,
S
~.
~.
~.
SS
~,
~.
~
~,
~.
~.
S
~.
~.
S
~.

3 |resulty-results| > 7

28

Delta Debugging to Propose Precision Reduction

resulty
V .
v
x ~\\\‘\
3 |resulty-resulty| < 7
result),

<

29

Delta Debugging to Propose Precision Reduction

‘ N,
N,
_ N,
N,
N,
N,

N,
N,
\\
N\,

resulty

oL
x L [

AY \\
\\
AY \\
N\, \\
\\
v AN
\\

[wixedbrici] » Iesitresit <
result),

X [singleprecision_|

30

Delta Debugging to Propose Precision Reduction

resulty

v

3 |resulty-resulty| <
result),

l/
’
’
2
’
,/
’
’
’
4
4

31

Code Transformation: Create
Variants

Use a compile framework (LLVM or CIL) or
binary instrumentation

main() { main() {
float a; double a;
float b; float b;
float c; S double c;
a=b+c; a=-b+c;

32

Delta Debugging to Propose Precision Reduction

resulty

v

3 |resulty-resulty| <

result),

l/
’
’
2
’
,/
’
’
’
4
4

33

Delta Debugging to Propose Precision Reduction

resulty

v

4
,l

3 |resulty-resulty| <

result),

l/
7
4

34

Delta Debugging to Propose Precision Reduction

35

Delta Debugging to Propose Precision Reduction

36

Delta Debugging to Propose Precision Reduction

37

Delta Debugging to Propose Precision Reduction

38

Delta Debugging to Propose Precision Reduction

39

Delta Debugging: Work Smarter,
Not Harder

e [Zeller et al.]

e We can often do better

* Silly to modify 1 variable at a time
— Try modifying half of the variables initially

— Decrease the number of variables to modify if we
can’ t make progress

— If we get lucky, search will converge quickly

40

Delta Debugging to Propose Precision Reduction

v

Double precision

Single precision

41

Delta Debugging to Propose Precision Reduction

v

42

Delta Debugging to Propose Precision Reduction

v

43

Delta Debugging to Propose Precision Reduction

v

44

45

2
3
4
5
6
7
8
9

20

O N N

L e o R V. Ve R - TN 1 B S [T G B R A)
- AR DR = O Y ® = W

8
39

Example (D.H. Bailey

#include <math.h>

1

#include <math.h>

#include <stdio.h> 2 #include <stdio.h>
3
long double fun(long double x) { 4 double fun(double x) {
intk,n=5; 5 intk,n=5;
long double t1, d1 = 1.0L; 6 double t1;
7 float d1 = 1.0f; / double before
8
t1=x; 9 t1=x;
for(k=1;k <=n;k++) { 10 for(k=1;k <=n;k++) {
d1 =2.0*d1; 11 d1=2.0=xd1;
t1 =t1 + sin (* - N\
return t1; 3 3 -
} 4 seconds to find type configuration
\ J
17
m? mgln(int arge ek — k o a el o
inti,jk.n=1
long double h 0
long double s 76%3 SpGEdUp bfore
\ J
2 tloat threshold = Te—14t; //long double before
24
t1 = —-1.0; 25 t1=-1.0;
dppi = acos(i1); 26 dppi = acos(t1);
s1 =0.0; 27 s1=0.0;
t1 =0.0; 28 t1=0.0;
h = dppi/ n; 29 h=dppi/n;
30
for(i=1;i<=n;i++){ st for(i=15i<=n;i++) {
t2 = fun (i * h); 32 t2 = fun (i * h);
s1 =s1 +sqrt (hxh + (12 — t1)%(t2 — t1)); 33 s1 =s1 +sqrt (hxh + (12 — t1)%(12 — t1));
t1 =12; 34 t1 =12;
} s}
36
// final answer is stored in variable s1 37 //final answer is stored in variable s1
return O; 38 returnO;
} o}

Original Program

Modified Program

Framework Components

LLVM bitcode
format

Original Create Search Type List of FP

Program Configuration File variables

Search
Configuration
—

A

and

types to try

type

assignment for
all FP variables

Does the transformed
program produce the
expected result?

Delta Debugging
Algorithm

Original
Program

Proposed
Precision

Program
Transformations

9

Comparison

Result
L

ITransformed Run and Compare
Program Results

Bitcode file with
suggested types

GNU Scientific Library (GSL)

* Applying analysis to programs using GSL library

* Preliminary results on three programs:

Variables Loads Stores Arith Ops

GSL Program F D F D F D F D Speedup %
bessel original 0 18 0 557 0 217 0 359 -
tuned 14 A 14 543 5 212 1 358 5.34

gaussian original 0 56 0 271 0 129 0 152 -
tuned 37 19 83 188 30 99 6 146 84.49

roots original 0 15 0 678 0 352 0 178 -
tuned 12 3 122 556 62 290 19 159 8.47

Progress to date

* Testing and Debugging of Distributed Parallel
Programs

— First complete analysis for hybrid programming
models: handles both communication and load/store

— THRILLE released under BSD license
— PPoPP’13 poster and submitted paper
* Floating-point Debugging
— LLVM-based prototype
— Works on some programs in GNU Scientific Library

— Preliminary results are encouraging!
49

Current and Future Work

* Analyze other programs that use the GSL library
— Computing thresholds => Can we automate it?
— Single inputs => Will the results be general enough?
— Impact on real-world program clients

e Support pointers and structures

* Analyze other code bases
— CLAPACK
— Gyrokinetic Toroidal Code (GTC) from LBNL

Conclusions

* Build testing tools
— Close to what programmers use

— Hide program analysis under testing

e Automated testing and debugging tools
— Can help to find nondeterministic bugs and floating point anomalies
— Can propose precision reduction in FP programs
— Will help to reduce power, improve performance, get desired

daCcuracy
* If you are not obsessed with formal correctness

— Testing and debugging can help you solve these problems with high
confidence

51

