SCF optimizations

T
_|
i]
~—
®
m
Q)
H
O
-
tal

Execution times of 16 atom test

Speedup

Reference implementation 176.35 1
Il Exploit symmetry of g() 30.58 5.8
:I Use lookup tables in g() 19.06 9.3
% BLAS and LAPACK matrix routines 18.06 9.8
3 Don’t recompute h() each iteration 17.95 9.8
Q'_.l Cache results of g() 9.45 18.7
g » All tests were performed on a workstation with an Intel Xeon
Q processor running at 2.67GHz.

« Each optimization test includes all optimizations listed above it.

jeuoneu.lslul |4

Additional work skipping test

double twoel (double schwmax) {
int i, 3j, k, 1;

for (1 = 0; 1 < nbfn; 1++) {
for (j = 0; j < nbfn; j++) {
if ((g_schwarz[i] [j] * schwmax) < tol2e)
{icutl += nbfn * nbfn; continue;}

double KLTest = tol2e / g _schwarz[i][]J];

for (k = 0; k < nbfn; k++) {
for (1 = 0; 1 < nbfn; 1++) {

if (g_schwarz[k][1l] < KLTest)
{icut2 ++; continue;}

icut3 ++;
double gg = g(i, J, k, 1);

g fock[i][]] += (gg *
g dens[k][1]);
g_fock[i] [k] -= (0.50 * gg *

g dens[3j][1]);

b

The additional memory requirements for

The inner-most loop always tests if
g schwarz[k] [1] islessthan KLTest

While creating g_schwarz, we can also
determine what the maximum

g schwarz[k] [1] is for each column k
and store it in

g schwarz max row value[Kk]

Then, in the k loop, we can check if
g schwarz max row value[k] isless
than KLTest

If it is, then we know that all the work in the
| loop will be skipped, and can skip that
loop entirely

i Code changes required for additional
work skipping test

double twoel (double schwmax) { double makesz () {

jeuoneu.lslul |4

int i, 3, k, 1;

for (i = 0; i < nbfn; i++) {
for (3 0; j < nbfn; j++) {
if ((g_schwarz[i] [j] * schwmax) < tol2e)
{icutl += nbfn * nbfn; continue;}
double KLTest = tol2e / g_schwarz[i][]];

for (k = 0; k < nbfn; k++) {
if (g _schwarx max row value[k] < KLTest)

{icut4 ++; continue;}

for (1 = 0; 1 < nbfn; 1++) {

if (g_schwarz[k][1l] < KLTest)
{icut2 ++; continue;}

icut3 ++;
double gg = g(i, J, k, 1);
g_fock[i][3] += (gg *

g dens[k][1]);
g fock[i] [k] -= (0.50 * gg *

int i, Jj;
double smax = 0.0;

for (i = 0; 1 < nbfn; 1++) {
double row max = 0.0;
for (j = 0; j < nbfn; j++) {
double gg = sqgrt(g(i, 3, 1, J))
if (gg > smax) smax = gg;
g _schwarz[i] [j] = gg;
if (gg > row max) row max = gg;
}
g_schwarx max row value[i] = row max;

}

return smax;

Exploit symmetry in g()

* g(i,),k,1) returns the same value in the following
cases.
* | and | are swapped
« kand | are swapped
* I,J and k,| are swapped

* We can use this to reduce the calls to g() to
1/8th of the original.

[T]
_I
o
—
@
)
Q)
my
@)
D
D

Exploit symmetry in g()

e update(a, b, c, d, gg) {
g_fock[b][a] += (gg * g_dens|c][d]);
g_fock]c][a] -= (0.50 * gg * g_dens[b][d]);}

» update() should be an inline function or a macro to minimize
overhead.

* We can do gg=g(i,j,k) once then perform the following updates:

update(i, j, k, I, gg)
update(i, j, I, k, gg)
update(j, i, k, I, gg)
update(j, i, I k gg)

jeuoneu.lslul |4

Exploit symmetry in g()

« There are special cases to consider:

- We must be sure to only iterate over i,},k,l values
which we haven't already processed due to the
symmetry.

- If I=), we can't perform updates which swap | and |.
Doing so would lead to the wrong values being
accumulated into various g_fock entries.

jeuoneu.lslul |4

- In addition to I=}, we must also take care when k=l or
I,]=k,| as well as any combinations of them.

Exploit symmetry in g()

. We end up with 6 separate variants of the twoel
loop:
- 1,], k, | can be freely swapped
_ =
~ k=
_ij=k,|l

[T]
_I
o
—
@
)
Q)
my
@)
D
D

jeuoneu.lslul |4

Exploit symmetry in g()

. The starting index for the 1 loop is a special case
o Loop Stru Ctu re Whe n which depends on whether k is equal to 1
- . The other loops can be easily created b
L |, K, | can be freely " " ¢

removing the loop and index for the appropriate
symmetry

swapped: .

The number of updates to perform will be fewer
since one or mare of the swaps will not alter the

arguments
* The special case for the initial value of 1 is only
for (i = 0; i < nbfn; i++) { required in the fully symmetric case. In all other
for (3 =i + 1; J < nbfn; j++) { cases, the 1 loop is either removed, or the initial
for (k = i; k < nbfn; k++) { value reducesto 1 + k
if (k == 1) 1 start =1 + j; * All other variants have 1 set equal to another
else 1 start =1 + k; Mdka_l
for (1 = 1 start; 1 < nbfn; 1++) { . Qj=kl
//calculate g(i,3,k,1); —e

//perform all eight updates

All loops could potentially be combined into one,

Precomputing lookup table for g()

. Many calculations in g() only rely on 1,j or k,l.

- Intermediate values are calculated for both ij and Kl
Inputs, then later used together.

— All calculations which only rely on one of the pairs
can easily be computed during initialization and
stored in an N2 sized array.

[T]
_I
o
—
@
)
Q)
my
@)
D
D

Removing exp() function from g()

Calculation of exijkl

double
double
double
double
double
double

double
double

double
double

double
double
double

jeuoneu.lslul |4

dxij = x|
dyij = yl
dzij = z][
dxkl = x[
dykl = yI[
dzkl = z[

rab2 = dxij
rcd2 = dxkl

expntIJd =

expntKL

(31
(31
(31
[1]
[1]
[1]

[

dxij + dyij * dyij + dzij * dzij;
dxkl + dykl * dykl + dzkl * dzkl;

expnt [i] + expnt[j];
= expnt[k] + expnt[l];

facij = expnt[i] * expnt[j] / expntIdJ;

fackl

expnt[k] * expnt[l] / expntKL;

exijkl = exprjh(-facij * rab2 - fackl * rcd2);

Eqm

Simplifying exijkl
calculation

r% == %)+ =y + (2 - 7)°
expnt;; = expnt; + expnt;
expnt; x expnt;
expnt;;
exyy = e(facy*ry?)+(=fac=ry?)

fac; =

ex;j, can be substituted with:
T =2 L 2
exijkl =] e(facijxry) * e(facy*rig®)

Then, we can define ex
ex; = e(-facysry?)

ij as:

Now we can express ex;j, as the product of two terms, each of which

onli deiends on il' or Kkl.

So by storing a table of all possible values for ex;;, we can replaced 16

memory lookups, 10 multiplications, 13 additions/subtractions, 2
divisions and an e* calculation with two! memory lookups and a single

Precomputing lookup table for g()

® Six values can be precomputed:

— ex;
— expnt;;
— x;; (Replaces xp and xq)
— yi; (Replaces yp and yq)
z;; (Replaces zp and zq)
— rnorm;

® The same lookup tables are use for both i,j and k,| indicies

® Requires additional 6*N* of memory

jeuoneu.lslul |4
|

® Cache performance can be improved by storing all

g Execution time breakdown as problem
Size Increases

600
500

%))
I 400 ® Eigen_std

o 300
dgemm

(&)
Q@ 200
%)
100 m twoel
0 ® onel

16 18 2022 24 26 28 30 32 34 36 38 40 42 44 46 48 50
Number of atoms

» As the problem size increases, the time spent diagonalizing the
matrix (Eigen_std and dgemm in above chart) becomes a larger
portion of the overall execution time

jeuoneu.lslul |4

Replacement Matrix Routines

« BLAS can provide replacements for the following operations:
« dgemm() calls in diagon()
« ddot() can replace contract_matricies()
» dscal() and daxpy() can replace damp()

cblas dscal (nbfn*nbfn, fac, g dens, 1);
// g _dens = fac * g dens

cblas daxpy(nbfn*nbfn, 1.0 - fac, g work, 1, g dens, 1);
// g dens = ((1.0 - fac) * g work) + g dens

The resulting calculation is:
g dens = fac * g dens + (1.0 - fac) * g work

Which is identical to the original operation in damp()

jeuoneu.lslul |4

This may not increase performance if the compiler was already able to vectorize damp() since using BLAS
routines requires two iterations over the array instead of one.

jeuoneu.lslul |4

Removing oneel()

The oneel() function doesn’t take long to run, but still
performs unnecessary calculations.

g fock is initialized with the same values each iteration.

Instead, we can save a copy of the initial g_fock values and
copy it back each iteration.

We still have to call contract_matricies() to determine the

jeuoneu.lslul |4

Execution time comparison

Unoptimized dgemm, Eigen_std and oneel

£ 400 / ® Eigen_std
§ 200 dgemm
N0 _m m twoel
16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 & onel
Number of atoms

Optimized oneel with dgemm and Eigen_std using BLAS and LAPACK

2 400 ® Eigen_std
§ 200 dgemm

Conventional method vs. direct method

Speedup of
— conventional method

—Cache size (GB)

O N W
|
|

16 20 24 28 32 36 40 44 48
Number of atoms

« Both conventional and direct methods included all optimizations.

« The conventional method is faster than the direct method in all tests
performed.

jeuoneu.lslul |4

« However, the usefulness of the conventional method is limited due to the

jeuoneu.lslul |4

Summary

g() has an 8-way symmetry which can be exploited to
reduce required calculations.

Many intermediate calculations in g() can be
precomputed and stored in a lookup table.

« Allows removing a slow e* calculation.
* Reduces number of memory operations required in g().

Matrix and vector routines can be trivially replaced with
optimized libraries.

Conventional method can speedup g() even further.

