
 Copyright 2013 ET International, Inc.

E
T

 In
te

rn
a
tio

n
a
l

SCF optimizations

 Copyright 2013 ET International, Inc.

E
T

 In
te

rn
a
tio

n
a
l

Execution times of 16 atom test

Optimization Time (s) Speedup

Reference implementation 176.35 1

Exploit symmetry of g() 30.58 5.8

Use lookup tables in g() 19.06 9.3

BLAS and LAPACK matrix routines 18.06 9.8

Don’t recompute h() each iteration 17.95 9.8

Cache results of g() 9.45 18.7

• All tests were performed on a workstation with an Intel Xeon

processor running at 2.67GHz.

• Each optimization test includes all optimizations listed above it.

• Caching g() leads to the best performance, but the size of the

cache grows with N4.

2

 Copyright 2013 ET International, Inc.

E
T

 In
te

rn
a
tio

n
a
l

Additional work skipping test

double twoel(double schwmax) {

 int i, j, k, l;

 for (i = 0; i < nbfn; i++) {

 for (j = 0; j < nbfn; j++) {

 if ((g_schwarz[i][j] * schwmax) < tol2e)

 {icut1 += nbfn * nbfn; continue;}

 double KLTest = tol2e / g_schwarz[i][j];

 for (k = 0; k < nbfn; k++) {

 for (l = 0; l < nbfn; l++) {

 if (g_schwarz[k][l] < KLTest)

 {icut2 ++; continue;}

 icut3 ++;

 double gg = g(i, j, k, l);

 g_fock[i][j] += (gg *

g_dens[k][l]);

 g_fock[i][k] -= (0.50 * gg *

g_dens[j][l]);

 } } } }

 return (0.50 * contract_matrices(g_fock,

g_dens));

}

• The inner-most loop always tests if

g_schwarz[k][l] is less than KLTest

• While creating g_schwarz, we can also

determine what the maximum

g_schwarz[k][l] is for each column k

and store it in

g_schwarz_max_row_value[k]

• Then, in the k loop, we can check if

g_schwarz_max_row_value[k] is less

than KLTest

• If it is, then we know that all the work in the

l loop will be skipped, and can skip that

loop entirely

• The additional memory requirements for

this are small as we only need a one-

dimensional array of size nbfn

3

 Copyright 2013 ET International, Inc.

E
T

 In
te

rn
a
tio

n
a
l

Code changes required for additional

work skipping test
double twoel(double schwmax) {

 int i, j, k, l;

 for (i = 0; i < nbfn; i++) {

 for (j = 0; j < nbfn; j++) {

 if ((g_schwarz[i][j] * schwmax) < tol2e)

 {icut1 += nbfn * nbfn; continue;}

 double KLTest = tol2e / g_schwarz[i][j];

 for (k = 0; k < nbfn; k++) {

 if (g_schwarx_max_row_value[k] < KLTest)

 {icut4 ++; continue;}

 for (l = 0; l < nbfn; l++) {

 if (g_schwarz[k][l] < KLTest)

 {icut2 ++; continue;}

 icut3 ++;

 double gg = g(i, j, k, l);

 g_fock[i][j] += (gg *

g_dens[k][l]);

 g_fock[i][k] -= (0.50 * gg *

g_dens[j][l]);

 } } } }

 return (0.50 * contract_matrices(g_fock,

g_dens));

}

double makesz() {

 int i, j;

 double smax = 0.0;

 for (i = 0; i < nbfn; i++) {

 double row_max = 0.0;

 for (j = 0; j < nbfn; j++) {

 double gg = sqrt(g(i, j, i, j));

 if (gg > smax) smax = gg;

 g_schwarz[i][j] = gg;

 if (gg > row_max) row_max = gg;

 }

 g_schwarx_max_row_value[i] = row_max;

 }

 return smax;

}

4

 Copyright 2013 ET International, Inc.

E
T

 In
te

rn
a
tio

n
a
l

Exploit symmetry in g()

• g(i,j,k,l) returns the same value in the following

cases:

• i and j are swapped

• k and l are swapped

• i,j and k,l are swapped

• We can use this to reduce the calls to g() to

1/8th of the original.

5

 Copyright 2013 ET International, Inc.

E
T

 In
te

rn
a
tio

n
a
l

Exploit symmetry in g()

• update(a, b, c, d, gg) {

 g_fock[b][a] += (gg * g_dens[c][d]);

 g_fock[c][a] -= (0.50 * gg * g_dens[b][d]);}

• update() should be an inline function or a macro to minimize

overhead.

• We can do gg = g(i,j,k,l) once then perform the following updates:

 update(i, j, k, l, gg)
 update(i, j, l, k, gg)
 update(j, i, k, l, gg)
 update(j, i, l, k, gg)
 update(k, l, i, j, gg)
 update(l, k, i, j, gg)
 update(k, l, j, i, gg)
 update(l, k, j, i, gg)

6

 Copyright 2013 ET International, Inc.

E
T

 In
te

rn
a
tio

n
a
l

Exploit symmetry in g()

 There are special cases to consider:

 We must be sure to only iterate over i,j,k,l values

which we haven't already processed due to the

symmetry.

 If i=j, we can't perform updates which swap i and j.

Doing so would lead to the wrong values being

accumulated into various g_fock entries.

 In addition to i=j, we must also take care when k=l or

i,j=k,l as well as any combinations of them.

7

 Copyright 2013 ET International, Inc.

E
T

 In
te

rn
a
tio

n
a
l

Exploit symmetry in g()

 We end up with 6 separate variants of the twoel

loop:

 i, j, k, l can be freely swapped

 i = j

 k = l

 i,j = k,l

 i = j and k = l

 i = j = k = l

8

 Copyright 2013 ET International, Inc.

E
T

 In
te

rn
a
tio

n
a
l

Exploit symmetry in g()

 Loop structure when

i, j, k, l can be freely

swapped:

for (i = 0; i < nbfn; i++) {

 for (j = i + 1; j < nbfn; j++) {

 for (k = i; k < nbfn; k++) {

 if (k == i) l_start = 1 + j;

 else l_start = 1 + k;

 for (l = l_start; l < nbfn; l++) {

 //calculate g(i,j,k,l);

 //perform all eight updates

 }}}}

• The starting index for the l loop is a special case

which depends on whether k is equal to i

• The other loops can be easily created by

removing the loop and index for the appropriate

symmetry

• The number of updates to perform will be fewer

since one or more of the swaps will not alter the

arguments

• The special case for the initial value of l is only

required in the fully symmetric case. In all other

cases, the l loop is either removed, or the initial

value reduces to 1 + k

• All other variants have l set equal to another

index:
• k = l

• i,j = k,l

• i = j and k = l

• i = j = k = l

• All loops could potentially be combined into one,

but doing so may hurt performance.

• Conditional updates in the inner loop would create a lot of

overhead.

• Other methods might cause difficulties when trying to parallelize

the code or could make automatic compiler optimizations

impossible.

9

 Copyright 2013 ET International, Inc.

E
T

 In
te

rn
a
tio

n
a
l

Precomputing lookup table for g()

 Many calculations in g() only rely on i,j or k,l.

 Intermediate values are calculated for both ij and kl

inputs, then later used together.

 All calculations which only rely on one of the pairs

can easily be computed during initialization and

stored in an N2 sized array.

10

 Copyright 2013 ET International, Inc.

E
T

 In
te

rn
a
tio

n
a
l

Removing exp() function from g()

Calculation of exijkl
 double dxij = x[i] - x[j];

 double dyij = y[i] - y[j];

 double dzij = z[i] - z[j];

 double dxkl = x[k] - x[l];

 double dykl = y[k] - y[l];

 double dzkl = z[k] - z[l];

 double rab2 = dxij * dxij + dyij * dyij + dzij * dzij;

 double rcd2 = dxkl * dxkl + dykl * dykl + dzkl * dzkl;

 double expntIJ = expnt[i] + expnt[j];

 double expntKL = expnt[k] + expnt[l];

 double facij = expnt[i] * expnt[j] / expntIJ;

 double fackl = expnt[k] * expnt[l] / expntKL;

 double exijkl = exprjh(-facij * rab2 - fackl * rcd2);

Simplifying exijkl

calculation

𝑟𝑖𝑗

2 = (𝑥𝑖 − 𝑥𝑗)
2 + (𝑦𝑖 − 𝑦𝑗)

2 + (𝑧𝑖 − 𝑧𝑗)
2

𝑒𝑥𝑝𝑛𝑡𝑖𝑗 = 𝑒𝑥𝑝𝑛𝑡𝑖 + 𝑒𝑥𝑝𝑛𝑡𝑗

𝑓𝑎𝑐𝑖𝑗 =
𝑒𝑥𝑝𝑛𝑡𝑖 ∗ 𝑒𝑥𝑝𝑛𝑡𝑗

𝑒𝑥𝑝𝑛𝑡𝑖𝑗

𝑒𝑥𝑖𝑗𝑘𝑙 = 𝑒 −𝑓𝑎𝑐 𝑖𝑗 ∗𝑟𝑖𝑗
2 + −𝑓𝑎𝑐 𝑘𝑙 ∗𝑟𝑘𝑙

2

𝑒𝑥𝑖𝑗𝑘𝑙 can be substituted with:

𝑒𝑥𝑖𝑗𝑘𝑙 = 𝑒 −𝑓𝑎𝑐 𝑖𝑗 ∗𝑟𝑖𝑗
2 ∗ 𝑒 −𝑓𝑎𝑐 𝑘𝑙 ∗𝑟𝑘𝑙

2

Then, we can define 𝑒𝑥𝑖𝑗 as:

𝑒𝑥𝑖𝑗 = 𝑒 −𝑓𝑎𝑐 𝑖𝑗 ∗𝑟𝑖𝑗
2

Now we can express 𝑒𝑥𝑖𝑗𝑘𝑙 as the product of two terms, each of which

only depends on ij or kl.
𝑒𝑥𝑖𝑗𝑘𝑙 = 𝑒𝑥𝑖𝑗 ∗ 𝑒𝑥𝑘𝑙

So by storing a table of all possible values for 𝑒𝑥𝑖𝑗 , we can replaced 16

memory lookups, 10 multiplications, 13 additions/subtractions, 2
divisions and an 𝑒𝑥 calculation with two1 memory lookups and a single
multiplication.

1 There will be two additional memory lookups required to get 𝑒𝑥𝑝𝑛𝑡𝑖𝑗

and 𝑒𝑥𝑝𝑛𝑡𝑘𝑙 for other calculations in g()

Equivalent

11

 Copyright 2013 ET International, Inc.

E
T

 In
te

rn
a
tio

n
a
l

Precomputing lookup table for g()

 Six values can be precomputed:

 𝑒𝑥𝑖𝑗

 𝑒𝑥𝑝𝑛𝑡𝑖𝑗

 𝑥𝑖𝑗 (Replaces xp and xq)

 𝑦𝑖𝑗 (Replaces yp and yq)

 𝑧𝑖𝑗 (Replaces zp and zq)

 𝑟𝑛𝑜𝑟𝑚𝑖𝑗

 The same lookup tables are use for both i,j and k,l indicies

 Requires additional 6*N
2
 of memory

 Cache performance can be improved by storing all

precomputed values as an array of structs rather than in

separate arrays.

12

 Copyright 2013 ET International, Inc.

E
T

 In
te

rn
a
tio

n
a
l

Execution time breakdown as problem

size increases

0

100

200

300

400

500

600

16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

S
e
c
o

n
d

s

Number of atoms

Eigen_std

dgemm

twoel

onel

• As the problem size increases, the time spent diagonalizing the

matrix (Eigen_std and dgemm in above chart) becomes a larger

portion of the overall execution time

• Fortunately, Eigen_std and dgemm can be replaced with standard

matrix operations from BLAS and LAPACK

13

 Copyright 2013 ET International, Inc.

E
T

 In
te

rn
a
tio

n
a
l

Replacement Matrix Routines

• BLAS can provide replacements for the following operations:

• dgemm() calls in diagon()

• ddot() can replace contract_matricies()

• dscal() and daxpy() can replace damp()

• cblas_dscal(nbfn*nbfn, fac, g_dens, 1);

• // g_dens = fac * g_dens

• cblas_daxpy(nbfn*nbfn, 1.0 - fac, g_work, 1, g_dens, 1);

• // g_dens = ((1.0 – fac) * g_work) + g_dens

• The resulting calculation is:

• g_dens = fac * g_dens + (1.0 – fac) * g_work

• Which is identical to the original operation in damp()

• This may not increase performance if the compiler was already able to vectorize damp() since using BLAS

routines requires two iterations over the array instead of one.

• LAPACK routines can replace the functions in diagonalize.c:

• rsg()  dsygv()

• rs()  dsyev()

14

 Copyright 2013 ET International, Inc.

E
T

 In
te

rn
a
tio

n
a
l

Removing oneel()

• The oneel() function doesn’t take long to run, but still
performs unnecessary calculations.

• g_fock is initialized with the same values each iteration.

• Instead, we can save a copy of the initial g_fock values and
copy it back each iteration.

• We still have to call contract_matricies() to determine the
one-electron energy contribution.

15

 Copyright 2013 ET International, Inc.

E
T

 In
te

rn
a
tio

n
a
l

Execution time comparison

0

200

400

600

16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

S
e
c
o

n
d

s

Number of atoms

Unoptimized dgemm, Eigen_std and oneel

Eigen_std

dgemm

twoel

onel

0

200

400

600

16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

S
e
c
o

n
d

s

Number of atoms

Optimized oneel with dgemm and Eigen_std using BLAS and LAPACK

Eigen_std

dgemm

twoel

onel

16

 Copyright 2013 ET International, Inc.

E
T

 In
te

rn
a
tio

n
a
l

Conventional method vs. direct method

0

1

2

3

16 20 24 28 32 36 40 44 48

Number of atoms

Speedup of
conventional method

Cache size (GB)

• Both conventional and direct methods included all optimizations.

• The conventional method is faster than the direct method in all tests

performed.

• However, the usefulness of the conventional method is limited due to the

amount of memory required, the additional power requirements, and the

decreasing performance as the problem size increases.

17

 Copyright 2013 ET International, Inc.

E
T

 In
te

rn
a
tio

n
a
l

Summary

• g() has an 8-way symmetry which can be exploited to

reduce required calculations.

• Many intermediate calculations in g() can be

precomputed and stored in a lookup table.

• Allows removing a slow ex calculation.

• Reduces number of memory operations required in g().

• Matrix and vector routines can be trivially replaced with

optimized libraries.

• Conventional method can speedup g() even further.

• Very high memory requirements.

• Incremental speedup with other optimizations only ~2x.

18

