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Execution times of 16 atom test 

Optimization Time (s) Speedup 

Reference implementation 176.35 1 

Exploit symmetry of g() 30.58 5.8 

Use lookup tables in g() 19.06 9.3 

BLAS and LAPACK matrix routines 18.06 9.8 

Don’t recompute h() each iteration 17.95 9.8 

Cache results of g()  9.45 18.7 

• All tests were performed on a workstation with an Intel Xeon 

processor running at 2.67GHz. 

• Each optimization test includes all optimizations listed above it. 

• Caching g() leads to the best performance, but the size of the 

cache grows with N4. 
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Additional work skipping test 

double twoel(double schwmax) { 

  int i, j, k, l; 

 

  for (i = 0; i < nbfn; i++) { 

  for (j = 0; j < nbfn; j++) { 

    if ((g_schwarz[i][j] * schwmax) < tol2e) 

      {icut1 += nbfn * nbfn; continue;} 

    double  KLTest = tol2e / g_schwarz[i][j]; 

 

  for (k = 0; k < nbfn; k++) { 

  for (l = 0; l < nbfn; l++) { 

 

    if (g_schwarz[k][l] < KLTest) 

      {icut2 ++; continue;} 

 

    icut3 ++; 

    double gg = g(i, j, k, l); 

    g_fock[i][j] += (       gg * 

g_dens[k][l]); 

    g_fock[i][k] -= (0.50 * gg * 

g_dens[j][l]); 

 

  } } } } 

 

  return (0.50 * contract_matrices(g_fock, 

g_dens)); 

} 

• The inner-most loop always tests if 

g_schwarz[k][l] is less than KLTest 

• While creating g_schwarz, we can also 

determine what the maximum 

g_schwarz[k][l] is for each column k 

and store it in 

g_schwarz_max_row_value[k] 

• Then, in the k loop, we can check if 

g_schwarz_max_row_value[k] is less 

than KLTest 

• If it is, then we know that all the work in the 

l loop will be skipped, and can skip that 

loop entirely 

• The additional memory requirements for 

this are small as we only need a one-

dimensional array of size nbfn 
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Code changes required for additional 

work skipping test 
double twoel(double schwmax) { 

  int i, j, k, l; 

 

  for (i = 0; i < nbfn; i++) { 

  for (j = 0; j < nbfn; j++) { 

    if ((g_schwarz[i][j] * schwmax) < tol2e) 

      {icut1 += nbfn * nbfn; continue;} 

    double  KLTest = tol2e / g_schwarz[i][j]; 

 

  for (k = 0; k < nbfn; k++) { 

    if (g_schwarx_max_row_value[k] < KLTest) 

        {icut4 ++; continue;} 

  for (l = 0; l < nbfn; l++) { 

 

    if (g_schwarz[k][l] < KLTest) 

      {icut2 ++; continue;} 

 

    icut3 ++; 

    double gg = g(i, j, k, l); 

    g_fock[i][j] += (       gg * 

g_dens[k][l]); 

    g_fock[i][k] -= (0.50 * gg * 

g_dens[j][l]); 

 

  } } } } 

 

  return (0.50 * contract_matrices(g_fock, 

g_dens)); 

} 

double makesz() { 

  int i, j; 

  double smax = 0.0; 

 

  for (i = 0; i < nbfn; i++) { 

  double row_max = 0.0; 

  for (j = 0; j < nbfn; j++) { 

    double gg = sqrt( g(i, j, i, j) ); 

    if (gg > smax) smax = gg; 

    g_schwarz[i][j] = gg; 

    if (gg > row_max) row_max = gg; 

  } 

  g_schwarx_max_row_value[i] = row_max; 

  } 

 

  return smax; 

} 
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Exploit symmetry in g() 

• g(i,j,k,l) returns the same value in the following 

cases: 

• i and j are swapped 

• k and l are swapped 

• i,j and k,l are swapped 

• We can use this to reduce the calls to g() to 

1/8th of the original. 
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Exploit symmetry in g() 

• update(a, b, c, d, gg) { 

  g_fock[b][a] += (gg * g_dens[c][d]); 

  g_fock[c][a] -= (0.50 * gg * g_dens[b][d]);} 

• update() should be an inline function or a macro to minimize 

overhead. 

• We can do gg = g(i,j,k,l) once then perform the following updates: 

 update(i, j, k, l, gg) 
 update(i, j, l, k, gg) 
 update(j, i, k, l, gg) 
 update(j, i, l, k, gg) 
 update(k, l, i, j, gg) 
 update(l, k, i, j, gg) 
 update(k, l, j, i, gg) 
 update(l, k, j, i, gg) 
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Exploit symmetry in g() 

 There are special cases to consider: 

 We must be sure to only iterate over i,j,k,l values 

which we haven't already processed due to the 

symmetry. 

 If i=j, we can't perform updates which swap i and j. 

Doing so would lead to the wrong values being 

accumulated into various g_fock entries. 

 In addition to i=j, we must also take care when k=l or 

i,j=k,l as well as any combinations of them. 
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Exploit symmetry in g() 

 We end up with 6 separate variants of the twoel 

loop: 

 i, j, k, l can be freely swapped 

 i = j 

 k = l 

 i,j = k,l 

 i = j and k = l 

 i = j = k = l 
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Exploit symmetry in g() 

 Loop structure when 

i, j, k, l can be freely 

swapped: 

 
for (i = 0; i < nbfn; i++) { 

  for (j = i + 1; j < nbfn; j++) { 

    for (k = i; k < nbfn; k++) { 

      if (k == i) l_start = 1 + j; 

      else l_start = 1 + k; 

      for (l = l_start; l < nbfn; l++) { 

        //calculate g(i,j,k,l); 

        //perform all eight updates 

      }}}} 

• The starting index for the l loop is a special case 

which depends on whether k is equal to i 

• The other loops can be easily created by 

removing the loop and index for the appropriate 

symmetry 

• The number of updates to perform will be fewer 

since one or more of the swaps will not alter the 

arguments 

• The special case for the initial value of l is only 

required in the fully symmetric case. In all other 

cases, the l loop is either removed, or the initial 

value reduces to 1 + k 

• All other variants have l set equal to another 

index: 
• k = l 

• i,j = k,l 

• i = j and k = l 

• i = j = k = l 

• All loops could potentially be combined into one, 

but doing so may hurt performance. 

• Conditional updates in the inner loop would create a lot of 

overhead. 

• Other methods might cause difficulties when trying to parallelize 

the code or could make automatic compiler optimizations 

impossible. 
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Precomputing lookup table for g() 

 Many calculations in g() only rely on i,j or k,l. 

 Intermediate values are calculated for both ij and kl 

inputs, then later used together. 

 All calculations which only rely on one of the pairs 

can easily be computed during initialization and 

stored in an N2 sized array. 
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Removing exp() function from g() 

Calculation of exijkl 
  double dxij = x[i] - x[j]; 

  double dyij = y[i] - y[j]; 

  double dzij = z[i] - z[j]; 

  double dxkl = x[k] - x[l]; 

  double dykl = y[k] - y[l]; 

  double dzkl = z[k] - z[l]; 

 

  double rab2 = dxij * dxij + dyij * dyij + dzij * dzij; 

  double rcd2 = dxkl * dxkl + dykl * dykl + dzkl * dzkl; 

 

  double expntIJ   = expnt[i] + expnt[j]; 

  double expntKL   = expnt[k] + expnt[l]; 

 

  double facij = expnt[i] * expnt[j] / expntIJ; 

  double fackl = expnt[k] * expnt[l] / expntKL; 

  double exijkl = exprjh(-facij * rab2 - fackl * rcd2); 

Simplifying exijkl 

calculation 
 
𝑟𝑖𝑗

2 = (𝑥𝑖 − 𝑥𝑗 )
2 + (𝑦𝑖 − 𝑦𝑗 )

2 + (𝑧𝑖 − 𝑧𝑗 )
2 

𝑒𝑥𝑝𝑛𝑡𝑖𝑗 = 𝑒𝑥𝑝𝑛𝑡𝑖 + 𝑒𝑥𝑝𝑛𝑡𝑗  

𝑓𝑎𝑐𝑖𝑗 =
𝑒𝑥𝑝𝑛𝑡𝑖 ∗ 𝑒𝑥𝑝𝑛𝑡𝑗

𝑒𝑥𝑝𝑛𝑡𝑖𝑗
 

𝑒𝑥𝑖𝑗𝑘𝑙 = 𝑒 −𝑓𝑎𝑐 𝑖𝑗 ∗𝑟𝑖𝑗
2 + −𝑓𝑎𝑐 𝑘𝑙 ∗𝑟𝑘𝑙

2  

 
𝑒𝑥𝑖𝑗𝑘𝑙  can be substituted with: 

𝑒𝑥𝑖𝑗𝑘𝑙 = 𝑒 −𝑓𝑎𝑐 𝑖𝑗 ∗𝑟𝑖𝑗
2 ∗ 𝑒 −𝑓𝑎𝑐 𝑘𝑙 ∗𝑟𝑘𝑙

2  

 
Then, we can define 𝑒𝑥𝑖𝑗  as: 

𝑒𝑥𝑖𝑗 = 𝑒 −𝑓𝑎𝑐 𝑖𝑗 ∗𝑟𝑖𝑗
2  

 
Now we can express 𝑒𝑥𝑖𝑗𝑘𝑙  as the product of two terms, each of which 

only depends on ij or kl. 
𝑒𝑥𝑖𝑗𝑘𝑙 = 𝑒𝑥𝑖𝑗 ∗ 𝑒𝑥𝑘𝑙  

 
So by storing a table of all possible values for 𝑒𝑥𝑖𝑗 , we can replaced 16 

memory lookups, 10 multiplications, 13 additions/subtractions, 2 
divisions and an 𝑒𝑥  calculation with two1 memory lookups and a single 
multiplication. 

                                                             
1 There will be two additional memory lookups required to get 𝑒𝑥𝑝𝑛𝑡𝑖𝑗  

and 𝑒𝑥𝑝𝑛𝑡𝑘𝑙  for other calculations in g() 
 

Equivalent 
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Precomputing lookup table for g() 

 Six values can be precomputed: 

 𝑒𝑥𝑖𝑗   

 𝑒𝑥𝑝𝑛𝑡𝑖𝑗  

 𝑥𝑖𝑗  (Replaces xp and xq) 

 𝑦𝑖𝑗  (Replaces yp and yq) 

 𝑧𝑖𝑗  (Replaces zp and zq) 

 𝑟𝑛𝑜𝑟𝑚𝑖𝑗  

 The same lookup tables are use for both i,j and k,l indicies 

 Requires additional 6*N
2
 of memory 

 Cache performance can be improved by storing all 

precomputed values as an array of structs rather than in 

separate arrays. 
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Execution time breakdown as problem 

size increases 
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• As the problem size increases, the time spent diagonalizing the 

matrix (Eigen_std and dgemm in above chart) becomes a larger 

portion of the overall execution time 

• Fortunately, Eigen_std and dgemm can be replaced with standard 

matrix operations from BLAS and LAPACK 
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Replacement Matrix Routines 

• BLAS can provide replacements for the following operations: 

• dgemm() calls in diagon() 

• ddot() can replace contract_matricies() 

• dscal() and daxpy() can replace damp() 

• cblas_dscal(nbfn*nbfn, fac, g_dens, 1); 

• // g_dens = fac * g_dens 

• cblas_daxpy(nbfn*nbfn, 1.0 - fac, g_work, 1, g_dens, 1); 

• // g_dens = ((1.0 – fac) * g_work) + g_dens 

• The resulting calculation is: 

• g_dens = fac * g_dens + (1.0 – fac) * g_work 

• Which is identical to the original operation in damp() 

• This may not increase performance if the compiler was already able to vectorize damp() since using BLAS 

routines requires two iterations over the array instead of one. 

• LAPACK routines can replace the functions in diagonalize.c: 

• rsg()  dsygv() 

• rs()  dsyev() 
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Removing oneel() 

 

• The oneel() function doesn’t take long to run, but still 
performs unnecessary calculations. 

• g_fock is initialized with the same values each iteration. 

• Instead, we can save a copy of the initial g_fock values and 
copy it back each iteration. 

• We still have to call contract_matricies() to determine the 
one-electron energy contribution. 
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Execution time comparison  
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Conventional method vs. direct method 
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• Both conventional and direct methods included all optimizations. 

• The conventional method is faster than the direct method in all tests 

performed. 

• However, the usefulness of the conventional method is limited due to the 

amount of memory required, the additional power requirements, and the 

decreasing performance as the problem size increases. 
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Summary 

• g() has an 8-way symmetry which can be exploited to 

reduce required calculations. 

• Many intermediate calculations in g() can be 

precomputed and stored in a lookup table. 

• Allows removing a slow ex calculation. 

• Reduces number of memory operations required in g(). 

• Matrix and vector routines can be trivially replaced with 

optimized libraries. 

• Conventional method can speedup g() even further. 

• Very high memory requirements. 

• Incremental speedup with other optimizations only ~2x. 
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