
ANL: Pete Beckman (PI), Marc Snir (Chief Scientist), Pavan Balaji, Rinku Gupta, Kamil Iskra,
 Franck Cappello, Rajeev Thakur, Kazutomo Yoshii

LLNL: Maya Gokhale, Edgar Leon, Barry Rountree, Martin Schulz, Brian Van Essen
PNNL: Sriram Krishnamoorthy, Roberto Gioiosa
UC: Henry Hoffmann
UIUC: Laxmikant Kale, Eric Bohm, Ramprasad Venkataraman
UO: Allen Malony, Sameer Shende, Kevin Huck
UTK: Jack Dongarra, George Bosilca, Thomas Herault

See http://www.argo-osr.org/ for more information

An Exascale Operating
System and Runtime
Software Research &
Development Project

Developing vendor neutral, open-source OS/R software

Terse Intro
•  ASCR FastOS was a forum back in 2002, and

funded research in 2004
•  OS/R work usually involves shared resources

•  Separation of Mechanism and Policy
•  OS/R research is not fixated on node kernels

–  (even if that’s all you ever hear about)
–  Many (most?) OS/R components are user-space
–  When Linux kernel extensions are needed, patches

are common and easy, adoption straightforward
•  PAPI, Lustre, libmsr-safe, BLCR, on-demand paging (for 0-

copy HPC NIC), cross memory attach (some extensions
migrate to the stock Linux kernel with help from vendors)

12/8/15 Argo OSR Pete Beckman 2

What is Argo building?
New System Software Components:

•  Improve application performance
–  Argobots lightweight thread/task layer

•  Improve performance of MPI+OpenMP, math libraries: PLASMA, etc.
•  Support new, more dynamic / load-balanced programming models

–  Argo Backplane hierarchical pub/sub backplane
•  Provide APIs to build application resilience with out-of-band events

•  Support new application modes
–  Argo Containers manage cores, memory, and power within a node

•  Improve resource mgmt in support of in-situ analysis & burst buffers, etc.

–  Argo Backplane: in-situ data reduction, analysis, and introspection

•  Provide new capabilities to applications
–  DIMMAP: provides new programmer interfaces for NVRAM
–  Argo Power: provides APIs; enables machine-learning & adaptation
–  Argo Global OS/R: support for new workflows, coupled apps, etc.

12/8/15 Argo OSR Pete Beckman 3

Is Current System Software Sufficient?
What Gaps Must We Address?

•  Extreme in-node parallelism
–  Poor mechanisms for precise resource management (cores,

power, memory, network)
–  Legacy threads/tasks implementations perform poorly at scale

•  Dynamic variability of platform; Power is constrained
–  Poor runtime mechanisms for managing dynamic overclocking,

provisioning power, adjusting workloads
–  No mechanisms for managing power dynamically, globally, and

in cooperation with user-level runtime layers

•  Hierarchical memory
–  Poor interfaces / strategies for managing deepening memory

•  New modes for HPC
–  No portable interfaces for easily building workflows, in-situ

analysis, coupled physics, advanced I/O, application resilience
12/8/15 Argo OSR Pete Beckman 4

•  To improve performance under power constraints, chips use dynamic overclocking
•  Chips have increasing silicon process variability impacting power constraints

“...Execution time difference of up to 16% among processors
within a 512 node allocation on Edison and Stampede”

0
0.5

1
1.5

2
2.5

3

2009 2015

Base

Turbo

Increasing Dynamism

Dynamic Node Performance is Increasing

12/8/15 Argo OSR Pete Beckman 5

Hierarchy of Enclaves
connected via a Backplane

Elastic intranode containers
with resource knobs

.

.

.
Lightweight thread/tasks designed

for containers, messaging, and
memory hierarchy

Adaptive, learning, integrated
control system

Argo Innovations to Address Exascale Gaps
(starting with the key abstractions)

HPC-Optimized Linux

Argo
Power

HPC
Sched DI-MMAP

HPC Applications

Argo-aware
MPI Argobots

 Application Interfacesç

POW
Sched

Global OS/R Services

Node
Resource
Manager

The Argo Architecture
Backplane

C
ilk

B
ot

s

C
ha

rm
++

Ta
sc

el

Pa
R

SE
C

PL

A
SM

A

X
M

P

O
pe

nM
P

O
m

pS
s

R
A

JA

(R
os

e)

K
O

K
K

O
S

(R
os

e)

 Runtime Interfacesç

 Node OS Interfacesç

A
rg

o
C

re
w

B
EA

C
O

N
 K

ey
 V

al
ue

 S
to

re

 = External Collaborations

12/8/15 Argo OSR Pete Beckman 7

Argo
Containers

Ex
po
śe

M
er

cu
ry

Exascale Node

Argo NodeOS/R: What are we building?

New set of Linux tools & extensions focused on
integrated resource management for Exascale

Core

Memory

Power

Fabric

Core

Memory

Power

Fabric

Why Containers?
HPC nodes are complex and powerful

Programmers need predictability (or not…)
Burst Buffer, in-situ Analysis, Coupled Codes, Advanced I/O,
Remote methods/async, ServiceOS Share or Partition?

Argo Containers
•  Leverages Google work on cgroups from 2007
•  Adapts and extends concept for HPC and Exascale

–  Provides performance isolation and control knobs

•  Allow HPC SW to manage resources more directly
–  Cores, Memory, Priority, I/O, Interconnect, Power

•  Enable co-scheduling of different physical
resources to provide optimal resource
configuration and utilization

•  Logical partitioning provides defined resources to:
–  Service OS, Simulation
–  Burst Buffer / Background Checkpoint Restart drain
–  In-situ analysis and data reduction
–  Advanced I/O, compression, etc.

•  KEY FEATURE: Dynamic adjustment is easy
–  Enables machine learning (autotuning) to find

optimal resource balance based on goals

12/8/15 Argo OSR Pete Beckman

$ argo_nodeos_config --create_service_os=\
"cpus:[0,24] mems:[0,24]"
$ argo_nodeos_config --create_container=\
"name:compute0 cpus:[2-10] mems:[1-23]"
$ argo_nodeos_config --alter_container=\
"name:compute0 -cpus:[8-10]”
[…]

$ argo_nodeos_config --show_config
======SERVICE_OS======
-Hardware threads: 0 24

-Memory nodes: 0 24

- 503 tasks

======================

----- COMPUTE CONTAINER -----

-Name: compute0

-Owner: judi (1001)
-Hardware threads(exclusive): 2 3 4 5 6 7

-Memory nodes(non exclusive): 1 2 3 4 5 6
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
22 23
-Tasks: 9378

-Not balancing load

10

Argo Container
Memory Management

•  Argo adds new capabilities to support complex memory
hierarchies

•  Our Finer-Grained Memory mechanism improves memory
management
–  Linux memory partitioning works at NUMA node granularity
–  Argo adapts NUMA to provide logical blocks

•  Arbitrary block size, control over physical location
•  Provides first-level abstraction for managing deeper memory

hierarchies
–  different partitioning granularities at different hierarchy levels

12/8/15 Argo OSR Pete Beckman

P
ar

tit
io

ni
ng

 in
to

fin

er
-g

ra
in

ed

m
em

or
y

un
its

Hardware
NUMA
 node 0

Hardware
NUMA
 node 1

ComputeContainer1

ComputeContainer2

ComputeContainer0

ComputeContainer0

Initial version well
suited for “coherence
islands” and can be
extended to even
deeper layers (*NDA)

11

Impact of Argo Containers

12/8/15 Argo OSR Pete Beckman

Ex
ec

ut
io

n
ti

m
e

The Test:
•  Dual 12-core Intel Haswell

•  (48 HW threads)
•  Test 1: XSBench on 46 threads
•  Test 2: XSBench/46 + Other/4
•  Test 3: XSBench/46 + Other/40

XSBench Run Time
NO CONTAINERS

XSBench Run Time
ARGO CONTAINERS

N
on

vo
lu

nt
ar

y
co

nt
ex

t
sw

it
ch

es

Argo Container Observations:
•  Shows fantastic promise!
•  Easy to configure and have

low overhead

Future:
•  Add controls for power, fabric
•  Provide different execution

environments in each
container (kernel features,
namespaces – think Docker/
Shifter)

12

Argo Power: NodeOS/R
What are we building?

•  Mechanism:
–  Tools & APIs for measuring,

controlling, and managing
power for HPC apps

•  HPC benefits from precise
resource management

•  Coordinate app needs and RTS
with low-level knobs

•  Policy:
–  Learning, prediction, and

autotuning
–  Goal based:

•  HPC App performance
•  Power

12/8/15 Argo OSR Pete Beckman 13

Historical
Data

Target
Application

Hierarchical Bayesian
Learning “convexifies”
space into Pareto-optimal
configurations

Why is this important?:
•  Process & power variation increasing
•  Imbalance wastes power (speed)
•  Turbo Boost algorithm “greedy”,

can’t see future syncs.
•  Co-design would help

Argo Power: Node OS/R Impact
•  Enable machine-learning; finding right knob settings at runtime.
•  Low-level monitoring and control linked to higher-level application

runtime provide real performance improvements
–  Enables thermal-aware thread management

•  Glue layers to existing APIs such as PAPI, TAU
–  Application can explore power and performance via friendly APIs

•  User-friendly control knobs for variability
–  Higher performance / higher variability vs. lower variability / lower performance

DI-MMAP and Looking to
Hierarchical Memory for Exascale

•  Non-volatile memory can
extend main memory by
orders of magnitude
with a suitably
optimized DRAM cache

•  Standard Linux page
cache is not optimized
for HPC use cases
–  high memory pressure
–  substandard

performance

12/8/15 Argo OSR Pete Beckman

DI-MMAP

DRAM
Page Cache

Primary FIFO?

Hotpage FIFO

Eviction Queue

is a hot page

writeback
page

page
fault

NVRAM

Streamline
Computation

Physical
Simulation

Manycore

PCIe flash PCM

CPU load/store
direct access

I/O
Read/Write

Persistent Page Storage

Service OSContainer

Network
I/O

Network
I/O

Container

Checkpoint

Exascale data-centric node

15

DI-MMAP: What are we Building?

•  Scalable, HPC implementation of DRAM cache for
NVRAM

•  Concept can be leveraged for multiple RAM layers
•  Integrates non-volatile random access memory into

the HPC memory architecture.
•  Enable scalable out-of-core computations for data-

intensive workloads.
•  Optimized for exascale compute node architecture:

massively parallel asynchronous threads
–  custom policies for allocation and distribution of DRAM

cache (size, NUMA placement)
–  Prefetch to support user-level threads (Argobots)

12/8/15 Argo OSR Pete Beckman 16

DI-MMAP – Impact
•  Significant performance improvements over Linux mmap with out-

of-core data intensive workloads
–  3–4x on Livermore Metagenomics Analysis Toolkit
–  2.4x on Graph500 Scale 40

•  Transparent support eases portability for many existing HPC
applications

•  Future:
–  Multiple caching policies customized to HPC applications
–  Application-tailored prefetch

12/8/15 Argo OSR Pete Beckman

Bioinformatics database query:
 DI-MMAP vs linux mmap

Number of Threads

0 50 100 150 200 250 300 350

K
−

m
e

rs
 p

e
r

s
e

c
o

n
d

0

50000

100000

150000

200000

250000

DI−MMAP

FS−MMAP

17

Argo Node OS/R Adoption and Deployment
•  All code is Open Source

–  Argo Containers: kernel patches, user-space tools (to be officially released)
–  Argo Power: kernel modules, user-space tools, libraries https://

github.com/scalability-llnl/, https://github.com/coolr-hpc/
–  DI-MMAP: kernel module, user-space tools https://bitbucket.org/

vanessen/di-mmap
–  HPC-Sched: kernel patches (to be officially released)

•  Deployment
–  Success working with CESAR to improve Node OS/R performance
–  Some components already in use by applications (DI-MMAP)
–  Argo Power components from LLNL (libmsr) deployed in production
–  We expect to test all components on CORAL systems

•  Vendor Collaboration
–  Some Argo Power components to be included in RedHat. PAPI too

12/8/15 Argo OSR Pete Beckman 18

Argo Node OS/R Roadmap
•  2016:

–  Centralized Node Resource Manager co-scheduling CPU, memory, network, and
power resources

•  2017:
–  Optimized support for communication libraries (optimal memory mappings for

put/get, fast thread wakeup)
–  Containers with dynamic power budgets
–  Callbacks to Fault Manager in user space on system fault events

•  2018
–  Integrated, hierarchical memory management including on-package and off-

package DRAM, memory on GPU, NVRAM
•  including partitioning, software-based caching and prefetching, callbacks into

runtime for latency hiding

•  2019:
–  System call forwarding and optimized support for on-node storage, including

draining policies of burst buffers
–  Ensure optimal execution of workflows

•  caching/prefetching of executables, inputs, outputs; result coalescence, etc.

12/8/15 Argo OSR Pete Beckman 19

Argobots: What are we building?

•  Lightweight, integrated, thread & task rts
for 100X increase in on-node parallelism

•  Built for hierarchical memory domains
•  Elastic by design – adjusting OS/R

resources (containers, memory, etc.) on
the fly.

•  Designed for tight integration with HPC
interconnect

•  Designed as middleware
•  “I can help solve your on-node AMR

adaptive/dynamic parallelism”

12/8/15 Argo OSR Pete Beckman

HPC Applications

Argobots

Pa
R

SE
C

PL

A
SM

A

O
pe

nM
P

K
O

K
K

O
S

(R
os

e)

Node OS/R

.

.

.

20

Today: Massive On-node Parallelism

•  MPI+OpenMP is sufficient for many
apps, but implementation is poor
–  Today MPI+OpenMP == MPI+Pthreads

•  Pthread abstraction is too generic,
not suitable for HPC
–  Lack of fine-grained scheduling,

memory management, network
management, signaling, etc.

•  New runtime will significantly
improve MPI+OpenMP performance
AND support emerging programming
models

core

MPI process with
many OpenMP threads

Current situation:
•  One or more MPI processes

per node
•  Each MPI process has

limited internal parallelism
typically with OpenMP

•  MPI Process communication
is often serialized

12/8/15 Argo OSR Pete Beckman 21

What are the Shortcomings today?: Pthreads (1/2)

22

Nesting

int	in[100][100],	out[100][100];		

	

#pragma	omp	parallel	for	

for	(i	=	0;	i	<	100;	i++)	{	

			petsc_voodoo(i);	

}	

	

petsc_voodoo(int	x)	

{	

			#pragma	omp	parallel	for	

			for	(j	=	0;	j	<	100;	j++)	

						out[x][j]	=	cosine(in[x][j]);	

}	

Execution time for 36 threads in the outer loop

Why is traditional OpenMP’s performance so bad?
The compiler cannot analyze petsc_voodoo to know
whether the function might ever block or yield, so it
has to assume that it might. Therefore a stack is
needed to facilitate it. Creating additional
pthreads for each nesting is the simplest way to
achieve this.

0.0	

0.5	

1.0	

1.5	

2.0	

2.5	

3.0	

3.5	

1	 3	 5	 7	 9	 11	 13	 15	 17	 19	 21	 23	 25	 27	 29	 31	 33	 35	

Ti
m
e	
(s
)	

#	OMP	Threads	|	Argobots	ULTs/tasks	(inner	loop)	

GCC/pthreads	 GCC/Argobots	ULTs	 GCC/Argobots	tasks	

Lower
is

better

Tasks of application mapped to a group of pthreads

Need lightweight mechanisms to switch tasks!
computation

communication

C	

pthreads

C	 C	 C	

map & schedule

How about these communications?
Wait or context switch?

Work units
intermixed with

blocking calls (such as
communication calls)
can cause idle cores

What are the Shortcomings today?: Pthreads (2/2)

12/8/15 Argo OSR Pete Beckman 23

Our Approach: Argobots
•  Lightweight Low-level Threading/

Tasking Framework
•  Massive parallelism

–  Exec. Streams guarantee progress
–  Work Units execute to completion

•  Separate mechanism from policy
–  Users can write their own scheduler
–  OpenMP knows more… use it...

•  Clearly defined memory semantics
–  Consistency domains
–  Software can manage consistency
–  Support explicit memory placement

and movement

Consistency Domain CD0

Consistency
Domain

CD1

Consistency
Domain

CD1

Consistency
Domain

CD1

Cache-
Coherent	
Memory	

Non-
Coherent	
Memory	

Work
Unit

Execution
Stream

Execution Model

U

U

U

OS
thread

12/8/15 Argo OSR Pete Beckman 24

Argobots Execution Model
•  Execution Streams (ES)

–  Sequential instruction stream
•  Can consist of one or more work units

–  Mapped efficiently to a hardware resource
–  Implicitly managed progress semantics

•  One blocked ES cannot block other ESs

•  User-level Threads (ULTs)
–  Independent execution units in user space
–  Associated with an ES when running
–  Yieldable and migratable
–  Can make blocking calls

•  Tasklets (Intra-node)
–  Atomic units of work
–  Asynchronous completion via notifications
–  Not yieldable, migratable before execution
–  Cannot make blocking calls

•  Scheduler
–  Stackable scheduler with

pluggable strategies

•  Sync primitives
–  Mutex, condition variable, future

•  Events
–  Communication triggers

S

Scheduler	 Pool	

U

ULT	

T

Tasklet	

E

Event	

ES1 Sched

U

U

E

E

E

E

U

S

S

T

T

T

T

T

...

ESn

12/8/15 Argo OSR Pete Beckman 25

Argobots Memory Model
•  Memory operation ordering consistency

–  Needed for correctly exposing visibility of data to
other threads/cores

–  Either through explicit memory fences or implicitly
through any atomic operation

Processor

DRAM

Store buffers

Today’s processors do
not distinguish memory
operations. A memory
consistency operation
would flush all stores

to memory.

Processor

IPM DRAM NVRAM

Store buffers

Scaling today’s technology to
future heterogeneous memory
would result in any memory
consistency operation to be

bound by the slowest memory.

Processor

IPM DRAM NVRAM

Store buffers

CD1
CD0

Argo
Approach

Argobots Ecosystem

ES1 Sched

U

U

E

E

E

E

U

S

S

T

T

T

T

T

Argobots

...

ESn

MPI+Argobots

ULT

ES

ULT

ES

MPI

Argobots runtime

Communication
libraries

Charm++

Applications

Charm++

Cilk “Worker”

Argobots ES

RWS
ULT

Fused ULT 1

Fused ULT 2

Fused ULT N

…

CilkBots

PO

GE

TR

SYTR TR

PO GE GE

TR TR

SYSY GE

PO

TR

SY

PO

SY SY

PaRSEC

OpenMP Mercury RPC

Origin	

Target	

RPC	proc	

RPC	proc	

OmpSs

GridFTP, Kokkos, RAJA, ROSE, TASCEL, XMP, etc.
External

Connections
12/8/15 Argo OSR Pete Beckman 27

Integrating OpenMP with Argobots

Nesting

int	in[100][100],	out[100][100];		

	

#pragma	omp	parallel	for	

for	(i	=	0;	i	<	100;	i++)	{	

			petsc_voodoo(i);	

}	

	

petsc_voodoo(int	x)	

{	

			#pragma	omp	parallel	for	

			for	(j	=	0;	j	<	100;	j++)	

						out[x][j]	=	cosine(in[x][j]);	

}	

Execution time for 36 threads in the outer loop

0.00	

0.01	

0.02	

0.03	

0.04	

0.05	

0.06	

0.07	

0.08	

0.09	

0.10	

1	 3	 5	 7	 9	 11	 13	 15	 17	 19	 21	 23	 25	 27	 29	 31	 33	 35	

Ti
m
e	
(s
)	

#	OMP	Threads	|	Argobots	ULTs/tasks	(inner	loop)	

ICC/pthreads	 ICC/Argobots	ULTs	 ICC/Argobots	tasks	

Lower is
better

Some overhead is added by creating
ULTs instead of Tasks

12/8/15 Argo OSR Pete Beckman 28

MPI interoperation with Argobots
Overlap communication with
computation using ULT
•  Lightweight

–  ULT does not execute concurrently
using additional hardware resource,
but takes turn to run by context
switching

–  No lock needed between two ULTs in
the same kernel thread

•  Asynchronous communication
–  Helps turn an MPI blocking call to a

nonblocking one
–  Decouples the operation of “send

start” and “send complete”
•  Dynamic Tasking

–  Providing automatic overlap based
on task-graph dependencies

tim
eline

ULT1 do
computation, start a
MPI send

Context switch to
ULT2, ULT1
communication
in background

Context switch back
to ULT1, ULT2
communicate in
background

ULT1

ULT2

CPU	 NIC	

12/8/15 Argo OSR Pete Beckman 29

•  High Performance Conjugate
Gradient (HPCG)
–  Solves Ax=b, large and sparse

matrix
•  Hiding Global Collective

Communication
–  overlap communication and

computation between iterations
–  fork a ULT to do ult_ddot and

join in the next iteration
•  Hiding Neighborhood

Communication
–  for each neighbor, fork a ULT to

do halo exchange and a small
part of SpMV (communication)

–  main ULT computes local spmv
(computation)

for k = [1: max_iter]:
 MG(A, r, z);
 if k > 1:
 ult_join (thread);
 if (normr <= tolerance) break;
 ……
 ult_fork(ult_ddot, ¶m, &thread)

Application: HPCG

SpMV(A, x, &y):
 for each neighbor:
 ult_fork(es, ult_spmv, &t[i]);
 for i in [0: nRows]:
 ult_yield();
 for each j in row i:
 y[i] += val[j] * x[idx[j]];
 for each neighbor i:
 ult_join(t[i]);

HPCG

SpMV

(i,j,k)

external internal

A x = y

12/8/15 Argo OSR Pete Beckman 30

Preliminary Results: HPCG

•  On 2,048 cores, HPCG using MPI+Argobots shows performance
improvement of 13.4% over MPI-only version, or 27.4% over MPI+Pthreads
version.

–  As core number increases, the benefit of communication hiding begins to reveal.
DDOT% increases from 0.62% on 16 cores to 36.8% on 2,048 cores.

0	

100	

200	

300	

400	

500	

600	

16	 32	 64	 128	 256	 512	 1K	 2K	

HP
CG

	(G
Fl
op

/s
)	

#Cores	

MPI	only	
MPI+Argobots	
MPI+Pthreads	(ppn=16)	
MPI+Pthreads	(ppn=8)	

12/8/15 Argo OSR Pete Beckman 31

Cilk over Argobots (Cilkbots)

•  Cilk built on Argobots
–  Worker (previously pthread) is now an Argobots ES

–  Cilk work stealing scheduler runs in a Argobots ULT

–  Modify Cilk compiler to generate Argobots code

•  Fuse multiple spawn trees to improve locality

–  Distinct spawn trees require their own stack

•  Specialized Locality-aware Argobots scheduler

•  Key Message: Argobots can improve BOTH existing
OpenMP and NEW programming models

		

Cilk “Worker”

Argobots ES

RWS ULT

Fused ULT 1

Fused ULT 2

Fused ULT N

…

spawn

continuation

spawn

spawn

continuation

12/8/15 Argo OSR Pete Beckman 32

PLASMA/PaRSEC
with Argobots

•  PaRSEC: framework for architecture-aware
scheduling of micro-tasks on many-core
–  Compiler optimizes tasks; Developer describes

dependencies
–  Separate algorithms from data distribution

 0

 2

 4

 6

 8

 10

16 36 64

G
Fl

op
s

pe
r c

om
pu

tin
g

co
re

computing cores

Performance comparison of dpotrf
Tile size: 180; Matrix size: 41400

PaRSEC native (OpenMPI)
PaRSEC Argobots (MPICH) exclusive

PaRSEC Argobots (MPICH) shared

 0

 2

 4

 6

 8

 10

16 36 64

G
Fl

op
s

pe
r c

om
pu

tin
g

co
re

computing cores

Performance comparison of dgetrf
Tile size: 180; Matrix size: 41400

PaRSEC native (OpenMPI)
PaRSEC Argobots (MPICH) exclusive

PaRSEC Argobots (MPICH) shared

12/8/15 Argo OSR Pete Beckman 33

Argobots Adoption and Deployment
•  All code is Open Source

–  http://git.mcs.anl.gov/argo/argobots.git
•  Deployment: (remember that customers are high-level Runtimes…)

–  Success working with CESAR to improve XSBench
–  In Testing: OpenMP, PLASMA (PaRSEC), Charm++, Cilk,
–  In Future: KOKKOS/RAJA, OmpSs, etc.

•  Other activities:
–  Exploring a broad community effort to standardize interfaces

•  Improved interoperability between MPI and OpenMP
•  Improved interoperability with emerging communication standards (OFI, UCX)

–  An open-source LLVM derived OpenMP reference implementation over Argobots

12/8/15 Argo OSR Pete Beckman 34

Argobots Roadmap
•  2016:

–  OpenMP integration and deployment
–  MPI integration

•  2017:
–  Network integration, lightweight thread activation
–  Performance/correctness tools
–  Open source LLVL OpenMP to Argobots

•  2018:
–  Extend hierarchical memory model, heterogeneous memory,

NVRAM
–  Progress estimation for power management
–  Heterogeneous hardware (Big/Little cores, CPU/GPU)

•  2019:
–  Machine learning / autotuning for memory hierarchy, power,

and concurrency in Argobots 12/8/15 Argo OSR Pete Beckman 35

12/8/15 Argo OSR Pete Beckman 36

Enclave 1b Enclave 1a

Backplane

Compute
Nodes

Mgmt Mgmt

Compute
Nodes

Mgmt Enclave 0

–  Recursive hierarchy enables new capabilities and workflows
–  Machine learning / autotuning for closed-loop control system
–  Enables writing meta-programs for enclaves:

•  task/load manager, many-task workflow engines, power management,
resilience response, coordination of coupled components, etc.

A Hierarchical Exascale System
Enclaves and Backplane and the Global OS/R

The Argo Backplane
•  Benefits:

–  Applications: Mechanisms for handling resilience, live
performance data (introspection), and responding to
dynamism

–  System: Mechanisms for hierarchical management of
power, workflows, NVRAM, etc.

•  Key Features:
–  Provides (scalable) global view
–  Provide aggregation services: Reduction, Filter, etc.
–  Uses Pub/Sub
–  Well suited for Application-based resilience
–  Key-Value Store and Dynamic Trees for implementing the

match-making and diffusion, Reduction of events.

12/8/15 Argo OSR Pete Beckman 37

•  Fixed	power	budget	for	a	machine
•  System	must	op\mize	HPC	performance		
•  Hierarchical	and	adap\ve	control

Nodes

Boards

Enclave

System

libMSR

Approach
•  Publish	power	on	Argo	backplane	
•  Adap\ve	decision	algorithm	at	each	
layer	of	the	tree
–  Collect	unused	power	and	propagate	up
–  Detect	power	constrained	execu\ons	and	

distributed	power	down
•  Policy	guidance	at	each	level

Adaptive Power Management

Results on Sandy Bridge Server
•  Learning finds pareto-optimal tradeoffs and

control provides power guarantees

The	POW	Scheduler:	Power	Control	through	the	Backplane

libMSR:	A	node	OS	level	API	for
Power/Thermal	data	collecJon
•  Read	thermal	and	power	MSRs
•  Matching	kernel	driver	(msr-safe)
•  Ac\ve	processor/DRAM	power	
control	through	RAPL

•  NodeOS	level	API	for	ARGO
Status
•  Support	for	Sandy/Ivy-Bridge
•  Port	to	Haswell	nearly	complete
•  haps://github.com/scalability-llnl/libmsr

Study: processor variation under power
bounds across ~2000 CPUs

POW:	Global	Power	Scheduling
•  Data	collected	via	libMSR/msr-safe

–  Publish	data	into	BEACON/EXPOSE
–  Online	aggrega\on	through	overlay

•  Hierarchical	control	algorithm	to	
control	node	local	power	caps

Status
•  Working	prototype
•  Successful	used	on	LLNL’s	cab	cluster

0 100 200 300 400

0
10
00

20
00

30
00

Time

W
at
ts

Power usage
across eight
enclaves (ach
color shows
data for one
enclave) under
a global power
bound and
shifting power
between
enclaves

Argo Backplane & Global OS/R
Adoption and Deployment

•  All code is Open Source
–  http://git.mcs.anl.gov/argo/argobots.git,

leo.cs.uchicago.edu, poet.cs.uchicago.edu

–  https://github.com/scalability-llnl/libmsr
–  Backplane pieces: Expose and BEACON being released

12/8/15 Argo OSR Pete Beckman 40

12/8/15 Argo OSR Pete Beckman 41

Global OS/R Example: Power (SC2015)

Enclave 1b Enclave 1a

Backplane

Compute
Nodes

Mgmt Mgmt

Compute
Nodes

Mgmt Enclave 0

–  Set power budgets per enclave (Global Resource Manager)
–  Enclave gives each node a power level (Enclave Resource Manager)
–  Nodes adjust Threads & Cores to meet goals (Node Resource Manager)
–  Entire system is dynamic, and automatically adjusts

HPC-Optimized Linux

Argo
Power

HPC
Sched DI-MMAP

HPC Applications

Argo-aware
MPI Argobots

 Application Interfacesç

POW
Sched

Global OS/R Services

Node
Resource
Manager

The Argo Architecture
Backplane

C
ilk

B
ot

s

C
ha

rm
++

Ta
sc

el

Pa
R

SE
C

PL

A
SM

A

X
M

P

O
pe

nM
P

O
m

pS
s

R
A

JA

(R
os

e)

K
O

K
K

O
S

(R
os

e)

 Runtime Interfacesç

 Node OS Interfacesç

A
rg

o
C

re
w

B
EA

C
O

N
 K

ey
 V

al
ue

 S
to

re

 = External Collaborations

12/8/15 Argo OSR Pete Beckman 42

Argo
Containers

Ex
po
śe

M
er

cu
ry

Exascale Node

Exploring ECP…

ECP
•  Argo Node OS/R

–  Containers
–  Power
–  HPC Sched
–  DI-MMAP

•  Argobots
–  OpenMP LLVM
–  Kokkos/Raja
–  PaRSEC

•  Backplane
–  Resilience Events
–  (parts…)
–  Enclave Support

•  Global OS/R
–  Power Sched
–  (parts…)

12/8/15 Argo OSR Pete Beckman 43

Research
•  Argo Node OS/R

–  Machine
Learning
Optimization

•  Argobots
–  Cilkbots, TASCEL
–  OmpSs

•  Backplane
–  (parts…)

•  Global OS/R
–  (parts...)

Let’s Talk
•  Argo Node OS/R

–  I/O Forwarding
–  Hierarchical

memory SW mgmt
–  Simple opt.

•  Argobots
–  Big/Little cores
–  Hetero cores
–  Charm++

•  Backplane
–  Workflow
–  FTI
–  Efficient Enclaves
–  (parts…)

•  Global OS/R
–  (parts...)

Questions

12/8/15 Argo OSR Pete Beckman 44

ECP questions:
1. The goals of your project and its current status (see next slides for sub-points)
2. What are the specific ties to identified requirements of the applications, other software
components?
3. Will the developed software technologies be mature enough to be part of the software
stack on exascale systems expected to be selected in 2019 and installed in 2023?
4. What do you feel are the key challenges posed and opportunities offered by exascale
systems for your specific area?
5. What is the R&D that you would like to carry out within the ECP?
6. What research remains for your project’s outcomes to benefit key DOE applications?
7. How would the proposed activities build on the research you have been carrying out
with ASCR Research funding?
8. What are the proposed activities that you believe would contribute to the ECP?
9. Your roadmap/timeline for maturing the software technologies and deploying them on
exascale platforms, with a few intermediate milestones or decision points (forks in the
roadmap). The timeline is of particular importance in selection what the ECP will include
in the development plans.
10. Highlight your X-stack or OS/R activities that would help DOE exascale apps achieve
ECP performance, efficiency and resilience performance goals on 2023 hardware and
system architectures selecting what the ECP will include in the development plans.

12/8/15 Argo OSR Pete Beckman 45

Project Goal and Status (Q1)
•  Do you release your software as open source? YES

–  Open Source is in our DNA
–  Many components released, some preparing for final approval

•  Do you have DOE/NNSA users of your software? YES
–  Argo Power components, DI-MMAP, etc.

•  Have facilities, vendors, or ISVs picked up your software? YES
–  DI-MMAP
–  Argo Power components from LLNL
–  Collaboration with vendors on integration plans:

•  Argo OS/R: memory management improvements: IBM (Sexton), Intel (Wisniewski)
•  Backplane: Intel's new “PMIx Error Handling infrastructure” is based directly on the GIB concept

with a similar API
•  Globalview: Part of Cray and Intel and OpenStack working group. Overall design has already

impacted Intel’s work – in particular, for power management and Global Information Bus

–  Adoption plan:
•  Make available as an option on CORAL systems in collaboration with LCFs
•  Standardization effort (Argobots):

–  A standardized user-level threads interface in cooperation with the broader community
–  Argobots as an implementation of the standardized user-level threads
–  An open-source LLVM derived OpenMP implementation over Argobots

•  Transfer to the community
–  Will organize Tutorials at SC and other major event in US (Cluster, HPDC when in USA)

12/8/15 Argo OSR Pete Beckman 46

Project Goal and Status (Q1)

•  What is the support model for your
software?
–  Supported by research group
– Our support model includes/will includes regular

releases, bug fix releases and providing support
to users via project mailing lists

•  Are there any applications in particular that
the outcomes of your project are targeting?
YES
– CESAR, HACC, ACME, NEK5000, FLASH, etc.

12/8/15 Argo OSR Pete Beckman 47

Question Q2 and Q10
Q2) What are the specific ties to identified requirements of the
applications, other software components?

–  All applications and workflows need monitoring and management of execution
dynamisms

–  Argo components will help support new application modes (Argo container,
Exposé), and provide new capabilities for NVRAM, Power and workflow
management (DIMMAP, Argo Power and Argo Crew)

Q10) Highlight your X-stack or OS/R activities that would help DOE
exascale apps achieve ECP performance, efficiency and resilience
performance goals on 2023 hardware and system architectures

–  Argo components will help improve performance (Argobot, Backplane, NodeOS)
–  Backplane will transport notifications and commands related to resilience
–  New capability for power management will help improve efficiency (Argo Power)

12/8/15 Argo OSR Pete Beckman 48

Question Q3 to Q6
•  Q3) Will the developed software technologies be mature enough to

be part of the software stack on exascale systems expected to be
selected in 2019 and installed in 2023? YES

•  Q4) What do you feel are the key challenges posed and
opportunities offered by exascale systems for your specific area?
–  Monitoring, modeling managing the dynamisms (power management,

faults) in hardware/software
–  Proposing relevant interface to provide dynamisms information and

enable management capabilities
•  Q5) What is the R&D that you would like to carry out within the

ECP?
–  See previous slides

•  Q6) What research remains for your project’s outcomes to benefit
key DOE applications?
–  See previous slides

12/8/15 Argo OSR Pete Beckman 49

Project Goal and Status (Q1)
Q7) How would the proposed activities build on the research you have
been carrying out with ASCR Research funding?

–  Build on the principles and design of the Argo components
–  Leverage experiment results on prototype software to spot limitations and identify

gaps
–  Improve the prototype software accrodingly

Q8) What are the proposed activities that you believe would contribute
to the ECP?

–  See previous slides

Q9) Your roadmap/timeline for maturing the software technologies and
deploying them on exascale platforms, with a few intermediate
milestones or decision points (forks in the roadmap). The timeline is of
particular importance in selecting what the ECP will include in the
development plans.

–  In the previous slides

12/8/15 Argo OSR Pete Beckman 50

