
ET

E.T. International, Inc.

2012 X-Stack: Programming Challenges, Runtime Systems, and Tools

Brandywine Team
September 2012

E.T. International, Inc.

2

Rishi Khan
(ET International)

Execution Model, Runtime Systems, Parallel
Intermediate Language, Resilience

Benoit Meister
(Reservoir Labs)

Programming Models, Loop Optimizations

David Padua
(Univ. of Illinois)

High level data structures and algorithms for
parallelism and locality

John Feo
(PNNL)

Co-design and NWChem kernels for evaluation, energy
efficiency

E.T. International, Inc.

3

Scalability Expose, express, and exploit O(1010) concurrency

Locality Locality aware data types, algorithms, and optimizations

Programmability Easy expression of asynchrony, concurrency, locality

Portability Stack portability across heterogeneous architectures

Energy
Efficiency

Maximize static and dynamic energy savings while
managing the tradeoff between energy efficiency,
resilience, and performance

Resilience Gradual degradation in the face of many faults

Interoperability Leverage legacy code through a gradual transformation
towards exascale performance

Applications Support NWChem

E.T. International, Inc.

4

E.T. International, Inc.

5

MPI, OpenMP, OpenCL SWARM

!  Asynchronous Event-Driven Tasks
!  Dependencies
!  Constraints
!  Resources
!  Active Messages

VS.

!  Communicating Turing Machines
!  Bulk Synchronous
!  Message Passing

T
im

e T
im

e

Active threads

Waiting

E.T. International, Inc.

6

§ Principles of Operation
• Codelets
* Basic unit of parallelism
* Nonblocking tasks
* Scheduled upon satisfaction of precedent constraints

•  Hierarchical Locale Tree: spatial position, data locality
•  Lightweight Synchronization
•  Active Global Address Space (planned)

§  Dynamics
•  Asynchronous Split-phase Transactions: latency hiding
•  Message Driven Computation
•  Control-flow and Dataflow Futures
•  Error Handling
•  Fault Tolerance (planned)

E.T. International, Inc.

7

§ SCALE: SWARM Codelet Association LanguagE
• Extends C99
• Human readable parallel intermediate representation for

concurrency, synchronization, and locality
• Object model interface
• Language constructs for expressing concurrency (codelets)
• Language constructs to association codelets (procedures and

initiators)
• Object constructs for expressing synchronization (dependencies,

barriers, and network registration)
• Language constructs for expressing locality (planned)

§ SCALECC: SCALE-to-C translator

E.T. International, Inc.

8

§ Basic construct for resiliency
§ Preserve -> Execute -> Validate -> Recover
§ Hierarchical

• Child can catch and recover from error or
defer to parent

§ Symmetric with try/catch error handling
§ For X-Stack, SWARM/SCALE will support

programmer-directed containment
domains

§ Dependency and locality information
could be used for automatic preservation/
recovery steps (out of scope)

*Image from Containment Domains: a Full System Approach to
Computational Resiliency, University of Texas

E.T. International, Inc.

9

!"#$%&'()*+,(-./(01/0(')

2"&34'5(-&)
6-$$'()

*78
)!)9("+/):+5)

!"5');'+<=-1>):+5)

?2*)

@"A
B@'C'&)!"#

$%&'(.)
R-Stream

D-%.%+E)
@"A'(%+E)

!

Different APIs and Execution
Models (AFL, OpenMP, DMA,

pthreads, CUDA, !)

Loop + data optimizations,
locality, parallelism, communication

and synchronization generation

6-14%+')
6"5'&)

!"#

E.T. International, Inc.

10

n = f();
for (i=5; i<= n; i+=2) {
 for (j=0; j<=i; i++) {
 if (j<=10) {
 … A[i+2j+n][i+3]…
 }
}

Z-polyhedron

Variables and access functions
as matrices

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1
1
3
0

0
0
1

0
0
2

0
1
1

n
j
i

Affine schedules determine
the execution order and place

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

1
10000
00100
00000
00010
10000
00001
00000

N
M
j
i

Dependence relations as polyhedra tie these components together

E.T. International, Inc.

11

§ Automatic parallelization and mapping

§ Heterogeneous, hierarchical targets

§ Automatic DMA/communications generation/
optimization

§ Auto-tuning

§ Scheduling with parallelism-locality-contiguity-
data layout tradeoffs

§ Corrective array expansion

E.T. International, Inc.

12

§ Generate SCALE parallel codelet code from sequential
programs
• Extend thread generation techniques following Baskaran et. al.

PPoPP’09 “Compiler Assisted Dynamic Scheduling” to generate
codelets, extending for explicit data placement

• Generate SCALE intermediate representation and hints for
scheduling and data placement affinities

§ Automatic optimization of irregular (sparse, mesh-based
codes)

E.T. International, Inc.

13

§ Develop libraries in SCALE to enable the
programming of codelets in the familiar notation
of C/C++

§ The libraries will represent parallelism using
one or both of

• Operations on arrays and sets

• Parallel constructs such as parallel loops

E.T. International, Inc.

14

§ The routine

parallel_for (<range>, <body>,<data array>)

body body body …

Data
(1)

Data
(2)

Data
(n)

…

would create a codelet sequence
according to the diagram on the right.

§ Operations such as

A[:]=A[:]+1;
would create similar codelet sequences
with each Data Block representing a
section (tile) of A and the body
representing A[i]+=1;.

§ Compiler optimizations such as fusion
(which would eliminate unnecessary
codelets) will be evaluated.

E.T. International, Inc.

15

§  Abstractions for parallelism and locality

•  Recursive data structure

•  Tree structured representation of memory

!"#$%%&"$#'%&

()*)+,&-$#&*$".*)/0&

1)%/#)23/'4&
."#$%%&+$4'%&

E.T. International, Inc.

16

§ Prevents actors (processors, accelerators, DMA) from accessing data
structures as built-in data types, making these data structures opaque to
the actors

§ Redundancy removal to
improve performance/energy
•  Communication
•  Storage

§ Redundancy addition to
improve fault tolerance
•  High Level fault tolerant

error correction codes and
their distributed placement

§ Placeholder representation for
aggregated data elements
•  Memory allocation/

deallocation/copying
•  Memory consistency models

!"#$%$&'()$*$)+("&(,$,-%.(
/"$%0%1/.(/0*$(2"#$%$&'((

3-4$%53$%6-%,0&1$5%$+")"$&1$(
%$78"%$,$&'+(

9
&(
1/
"3
(:01/$(;<5;=(

;-10)(>'-%0?$(

>'01@0A)$(,$,-%.(

B0"&(!CDB(,$,-%.(

E$'4-%@(

!"#$%$&'(%$3%$+$&'0F-&+(6-%('/$(
+0,$(!DGD(

((((((((1-8)2(A$(0(3-'$&F0)(CH!GD(
A-8&20%.(

>I(0&2(JI($&0A)$($K1"$&'(20'0(
%$3%$+$&'0F-&+(0&2(
'%0&+6-%,0F-&+(

>I(
;"A%0%"$+(
C8&LF,$(
:-,3")$%(

G%0&+6-%,0F-&+(

JI(
B$,-%.(:-&'%-))$%+(
E$'4-%@(M&'$%601$+(
B$,-%.(D??%$?0'-%(

E.T. International, Inc.

17

§ DOE’s Premier computational chemistry software
§ One-of-a-kind solution scalable with respect to scientific challenge

and compute platforms
§ From molecules and nanoparticles to solid state and biomolecular

systems
§ Distributed under Educational Community License
§ Open-source has greatly expanded user and developer base
§ Worldwide distribution (70% is academia)

QM-CC QM-DFT AIMD QM/MM MM

E.T. International, Inc.

18

1.  Accept co-design kernels with containment domains

2.  Add rescinded primitive data types for energy efficiency

3.  Add hierarchical tiled arrays where appropriate

4.  Use R-Stream for loop optimization where appropriate

5.  Convert the remaining portions to SCALE

6.  Evaluate performance on x86 clusters and Runnemede
simulator

7.  Iterate

E.T. International, Inc.

19

6.  Co-design Apps

7.  Portability

8.  Resilience

9.  Energy Efficiency

10.  MPI Interoperability

1.  Runtime Scheduling

2.  Runtime Data Locality

3.  Loop Optimizations for Scheduling and Placement

4.  Sparse Arrays and Irregular Tiles

5.  High Level Notations and Optimizations

Year 1 Year 2 Year 3

Task Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
T1.1
T1.2
T2.1
T2.2
T2.3
T2.4
T3.1
T3.2
T3.3
T3.4
T4.1
T4.2
T5.1
T5.2
T5.3

Year 1 Year 2 Year 3

Task Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
T5.7
T5.8
T5.9
T6.1
T6.2
T6.3
T6.4
T6.5
T6.6
T7.1
T8.1
T8.2
T9.1
T9.2
T10.1

Lead Color Legend: ETI Reservoir UIUC PNNL

E.T. International, Inc.

20

§ Co-PIs:
• Benoit Meister (Reservoir)

• David Padua (Univ. Illinois)

• John Feo (PNNL)

§ Other team members:
• ETI: Robin Lawton, Chanika Denny

• Reservoir: Rich Lethin

• Univ. Illinois: Adam Smith

• PNNL: Andres Marquez

§ DOE
• Sonia Sachs, Bill Harrod

E.T. International, Inc.

21

