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Scalability Expose, express, and exploit O(1010) concurrency 

Locality Locality aware data types, algorithms, and optimizations 

Programmability Easy expression of asynchrony, concurrency, locality 

Portability Stack portability across heterogeneous architectures 

Energy 
Efficiency 

Maximize static and dynamic energy savings while 
managing the tradeoff between energy efficiency, 
resilience, and performance 

Resilience Gradual degradation in the face of many faults 

Interoperability Leverage legacy code through a gradual transformation 
towards exascale performance 

Applications Support NWChem  
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MPI, OpenMP, OpenCL SWARM 

!  Asynchronous Event-Driven Tasks 
!  Dependencies  
!  Constraints 
!  Resources 
!  Active Messages 

VS. 

!  Communicating Turing Machines 
!  Bulk Synchronous 
!  Message Passing 

T
im

e T
im

e 

Active threads 

Waiting 
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§ Principles of Operation 
• Codelets 
* Basic unit of parallelism 
* Nonblocking tasks 
* Scheduled upon satisfaction of precedent constraints 

•  Hierarchical Locale Tree: spatial position, data locality 
•  Lightweight Synchronization 
•  Active Global Address Space (planned) 

§  Dynamics 
•  Asynchronous Split-phase Transactions: latency hiding 
•  Message Driven Computation 
•  Control-flow and Dataflow Futures 
•  Error Handling 
•  Fault Tolerance (planned) 
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§ SCALE: SWARM Codelet Association LanguagE 
• Extends C99 
• Human readable parallel intermediate representation for 

concurrency, synchronization, and locality 
• Object model interface 
• Language constructs for expressing concurrency (codelets) 
• Language constructs to association codelets (procedures and 

initiators) 
• Object constructs for expressing synchronization (dependencies, 

barriers, and network registration) 
• Language constructs for expressing locality (planned) 

§ SCALECC: SCALE-to-C translator 
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§ Basic construct for resiliency 
§ Preserve -> Execute -> Validate -> Recover 
§ Hierarchical 

• Child can catch and recover from error or 
defer to parent 

§ Symmetric with try/catch error handling 
§ For X-Stack, SWARM/SCALE will support 

programmer-directed containment 
domains 

§ Dependency and locality information 
could be used for automatic preservation/
recovery steps (out of scope) 

*Image from Containment Domains: a Full System Approach to 
Computational Resiliency, University of Texas  
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n = f(); 
for (i=5; i<= n; i+=2) { 
  for (j=0; j<=i; i++) { 
    if (j<=10) { 
      … A[i+2j+n][i+3]… 
  } 
} 
 

Z-polyhedron 

Variables and access functions 
as matrices 
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Affine schedules determine 
the execution order and place 
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§ Automatic parallelization and mapping 

§ Heterogeneous, hierarchical targets 

§ Automatic DMA/communications generation/
optimization 

§ Auto-tuning  

§ Scheduling with parallelism-locality-contiguity-
data layout tradeoffs 

§ Corrective array expansion 
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§ Generate SCALE parallel codelet code from sequential 
programs 
• Extend thread generation techniques following Baskaran et. al. 

PPoPP’09 “Compiler Assisted Dynamic Scheduling” to generate 
codelets, extending for explicit data placement 

• Generate SCALE intermediate representation and  hints for 
scheduling and data placement affinities 

§ Automatic optimization of irregular (sparse, mesh-based 
codes) 
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§ Develop libraries in SCALE to enable the 
programming of codelets in the familiar notation 
of C/C++ 

§ The libraries will represent parallelism using 
one or both of  

• Operations on arrays and sets 

• Parallel constructs such as parallel loops 
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§ The routine 

parallel_for (<range>, <body>,<data array>) 

body body body … 

Data 
(1) 

Data 
(2) 

Data 
(n) 

… 

would create a codelet sequence 
according to the diagram on the right. 

 

§ Operations such as  

A[:]=A[:]+1; 
would create similar codelet sequences 
with each Data Block representing a 
section (tile) of A and the body 
representing A[i]+=1;. 

 

§ Compiler optimizations such as fusion 
(which would eliminate unnecessary 
codelets) will be evaluated. 
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§  Abstractions for parallelism and locality 

•  Recursive data structure 

•  Tree structured representation of memory 
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§ Prevents actors (processors, accelerators, DMA) from accessing data 
structures as built-in data types, making these data structures opaque to 
the actors 

§ Redundancy removal to 
improve performance/energy 
•  Communication 
•  Storage 

§ Redundancy addition to 
improve fault tolerance 
•  High Level fault tolerant 

error correction codes and 
their distributed placement 

§ Placeholder representation for 
aggregated data elements  
•  Memory allocation/

deallocation/copying 
•  Memory consistency models 
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§ DOE’s Premier computational chemistry software 
§ One-of-a-kind solution scalable with respect to scientific challenge 

and compute platforms 
§ From molecules and nanoparticles to solid state and biomolecular 

systems 
§ Distributed under Educational Community License 
§ Open-source has greatly expanded user and developer base  
§ Worldwide distribution (70% is academia) 

QM-CC                   QM-DFT             AIMD                        QM/MM                 MM 
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1.  Accept co-design kernels with containment domains 

2.  Add rescinded primitive data types for energy efficiency 

3.  Add hierarchical tiled arrays where appropriate 

4.  Use R-Stream for loop optimization where appropriate 

5.  Convert the remaining portions to SCALE 

6.  Evaluate performance on x86 clusters and Runnemede 
simulator 

7.  Iterate 
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6.  Co-design Apps 

7.  Portability 

8.  Resilience 

9.  Energy Efficiency 

10.  MPI Interoperability 

1.  Runtime Scheduling 

2.  Runtime Data Locality 

3.  Loop Optimizations for Scheduling and Placement 

4.  Sparse Arrays and Irregular Tiles 

5.  High Level Notations and Optimizations 

Year 1 Year 2 Year 3 

Task Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 
T1.1 
T1.2 
T2.1 
T2.2 
T2.3 
T2.4 
T3.1 
T3.2 
T3.3 
T3.4 
T4.1 
T4.2 
T5.1 
T5.2 
T5.3 

Year 1 Year 2 Year 3 

Task Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 
T5.7 
T5.8 
T5.9 
T6.1 
T6.2 
T6.3 
T6.4 
T6.5 
T6.6 
T7.1 
T8.1 
T8.2 
T9.1 
T9.2 
T10.1 

Lead Color Legend:          ETI          Reservoir          UIUC           PNNL 
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§ Co-PIs: 
• Benoit Meister (Reservoir) 

• David Padua (Univ. Illinois) 

• John Feo (PNNL) 

§ Other team members: 
• ETI: Robin Lawton, Chanika Denny 

• Reservoir: Rich Lethin 

• Univ. Illinois: Adam Smith 

• PNNL: Andres Marquez 

§ DOE 
• Sonia Sachs, Bill Harrod 
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