
Modeling Execution Models (MEMS):
Progress Report for the X-Stack Meeting

Project Team

Pacific Northwest National Laboratory / PAL: Kevin Barker, Daniel
Chavarria, Adolfy Hoisie (PI), Sriram Krishnamoorthy, Joseph Manzano,
Abhinav Vishnu
Indiana University: Matthew Anderson, Thomas Sterling(PI)

Performance and Architecture Laboratory
Pacific Northwest National Laboratory

March 18, 2013



1 Introduction

As system architectures continue to advance towards Exascale, system and
application developers require tools to enable reasoning about the impact
on observable performance caused by design decisions. Often, this impact
is difficult to predict at large scale given the multi-dimensional space under
investigation and non-linear effects inherent in performance. Furthermore,
researchers and designers need tools to quantify the trade-offs inherent in
performance, power and energy consumption, and reliability. Application-
centric analytical models enable a rapid exploration of both the architecture
and system design spaces. Through an iterative process, we have success-
fully utilized models as a key component in the co-design process, enabling
simultaneous exploration of both system and application design alternatives.
For instance, models allow designers to quantify the impact of new hardware
technology and configuration, as well as analyzing and guiding the appli-
cation design, all in advance of system deployment. This capability allows
designers to effectively explore the design space leading to more optimal so-
lutions. Explicitly modeling the impact of the execution model on overall
application behavior represents a new frontier in modeling. As architectures
continue to increase in scale and complexity, execution models will evolve to
enable efficient, high performance application execution. However, increasing
system complexity brings with it new challenges for software and hardware
architects and designers. The vastly higher degree of parallelism raises relia-
bility concerns due to the greater number of system components while at the
same time requiring applications to scale to levels of parallelism with lower
threshold voltages never before encountered. Greater system size requires
execution models that promote higher degrees of asynchrony as the cost of
synchronization across all tasks in an application will be prohibitive. Above
all, execution models must provide the means for reducing data movement,
both within a “local” (e.g. inside a node) memory hierarchy and across the
system. Underlying all of these concerns is the overarching optimization need
in terms of energy consumption. As a result, using models to reason about
application and system behavior, including through capturing the impact of
execution models changes, is more important than ever. Models will enable
designers to navigate the increasingly complex design space and provide in-
sight into how applications utilize system resources. However, before we can
expand analytical model frameworks with the notation of execution models,
we need to be able to characterize such a concept.

This report is organized as follows. In section 2 we describe qualitatively
the notion of an execution model. In section 3 we propose an analytical
model frameworks with the notation of execution models, which allows us

1



to characterize such a concept in a quantitative fashion. Section 4 concerns
itself with the application workload under consideration and with modeling
of these apps in terms of execution model characteristics. We summarize and
draw conclusions in Section 5.

2 What is an Execution Model?

A simple definition is to consider an execution model as a layer that connects
application and algorithms with the underlying hardware through its seman-
tics. Other definitions includes the orchestration of computing on hardware
and software resources and a paradigm of computing establishing the prin-
ciples of computing that govern the inter-relationships of the abstract and
physical components and their functions comprising the computational pro-
cess. [2] Even though all these definitions seem to differ, they agree that there
is an interaction between the hardware and software components of a sys-
tem. Due to the different definitions, an easier way to describe (i.e. qualify)
execution models would be to characterize them according to their features
and characteristics. Efforts presented in [3] provide a methodology to charac-
terize these models. However, current efforts cannot be connected to actual
hardware implementations to measure (i.e. quantify) the impact of these
execution model instances. Next, we present some examples of execution
models to help illustrate this elusive concept[1].

2.1 Examples of Execution Models

Each generation of hardware advances provided new features that the soft-
ware stack needed to take advantage of. Thus, it is not surprising that some
of the biggest paradigm shifts in execution models coincide with evolutions
in hardware technology. Here are some of the most well-known execution
models throughout the history of computing:

Von Neumann Sequential Execution. The first of the execution mod-
els consists of the stored program principles, a single control path (single
instruction pointer) and sequential fetch-execute-write execution cycles.

Vector Execution. Utilizing the concept of pipelining, vector execution
models permit better utilization of the pipelined units and allowed the speed
up of certain classes of applications. The advantages over the previous model
include the overlapping of instructions and memory operations which resulted
in better unit utilization and avoided resource hazards.

2



Dataflow execution model. This model re-organizes the computation on
a set of primitive operations which are driven by the availability of data. This
model exposes codes’ maximum available parallelism and, following strict
construction rules, can guarentee determinate concurrent execution.

SIMD Array Model. This model belongs to the class of Single Instruc-
tion Multiple Data models introduced by Michael J. Flynn in its famous
taxonomy. Under this model, computation is performed by an array of sim-
ple identical components which execute the same instruction. The memory
in this case is partitioned across all these components and operated upon by
the array of processors.

Communicating Sequential Processes Model. This model is the most
common used one today. Its semantics involve the idea of processes as con-
currency units, private storage to each of these processes and “messages”1

to communicate between them. Computation is carried out in each process
and communication is carried out by messaging when needed. This model
is an efficient fit for the Beowulf Clusters that grew to dominate the HPC
landscape in the last decades.

Bulk Synchronous Parallel Model. Under this model, the underlying
computation framework is still composed of a group of processes with pri-
vate storage communicating via an interconnect network but it differs in the
following. The computation is divided in a series of “super steps” in which
the following three actions can take place: concurrent computation using the
local memory; communication using single sided messages2; and an end-of-
super-step barrier.

Global Memory Based Models. This umbrella term encompasses the
execution models that have a global view of memory. This includes (but it is
not limited to) flat shared memory models, Static Synchronous Global Mem-
ory Models, Dynamic Asynchronous Global Memory Models and ParalleX-
like Models. Under the flat shared memory model, the memory is seen as a
flat address range and it can be accessed by anyone at any time. Under the
Static Synchronous global memory, each of the parallel entities can access the
entire space but there is an affinity to a region of the memory which allows the
exploitation of locality of references. In the case of Dynamic Asynchronous

1two sided messages are part of the model
2instead of the two sided ones from CSP

3



Global Memory models, the Static Synchronous Global Memory model is
enhanced to allow the creation of both local and remote work3.

Finally, the ParalleX execution model provides a global addressable mem-
ory space and fine grain synchronization constructs. The major components
of this execution model include compute complexes, which are executing ob-
jects residing into a “Synchronous Domain”; ParalleX processes, which are
containers for the complexes; Local Control Objects (LCOs), that provides
polymorphic fine grain synchronization support; Parcels, which provide ac-
tive message like semantics; and its Active Global Address Space, that allows
a shared address space across the entire system’s virtual addressing schemes.
Other features like percolation and micro-check pointing are intrinsic to this
model as well.

Both the qualification and quantification of these execution models is a
critical aspect for the next generation and state-of-the-art systems of today.
Algorithms are tailored to use execution model primitives in an efficient man-
ner and execution model runtime must adapt and efficiently use the hardware
resources available to them. Thanks to co-design, the idea of tailoring appli-
cation, execution models and hardware features to maximize a specific metric
(power, performance, resilience or a combination of thereof) is taking hold
in the High Performance Computing Community. However, without a clear
view of what each of these components contribute to the entire picture; we
are just searching blindly in a very large space without a clear direction. That
is why, characterizing, both qualitative and quantitative, execution models
allows the community to understand the current state of affairs and the need
(or lack thereof) for new execution models. Moreover, this allows the cre-
ation of predictive models for new execution models and new architectures.
Such methodology for characterizing execution models is represented in the
SCaLeM / AntiCiPate framework which is explained next.

3 SCaLeM and AntiCiPate: An Introduction

The first step in modeling the behavior of execution models is a character-
ization of the key properties that define the execution model. We consider
the following four properties in identifying an execution model: nature of
Concurrency, Synchronization between concurrent units, the nature of Mem-
ory, including memory consistency, and expression of Locality. These four

3The most well-known implementations of these models can be found in the runtimes
of PGAS and APGAS programming languages, like Global Arrays for PGAS and X10 for
APAGS

4



Figure 1: The SCaLeM and AntiCiPate Framework

attributes synchronization, concurrency, locality, and memory are referred
to as SCaLeM for short. In addition to being fundamental, these attributes
also identify properties of execution models have a quantifiable impact on
the runtime behavior of programs written using a given execution model. In
doing do, these attributes identify the key properties of an execution model,
taking us from an abstract characterization towards concrete definition and
characterization.

While these attributes identify useful characteristics, they are not suffi-
cient in fully understanding the runtime behavior of an execution model. For
example, the interaction between concurrency units and data locality prop-
erties has crucial implications on efficient program execution. We therefore
consider compositions of these attributes that help in denoting properties
that cannot be individually associated with any one attribute. The above
relation is associated with the composition between concurrency and locality.

Note that attributes and compositions primarily catalog the basic proper-
ties of a given execution model. In particular, they identify the features of an
execution model a programmer would be most interested in when developing
optimized application using the given model. We separate the information
associated with concrete instantiation of an execution model on a given archi-
tecture. These, referred to as parameters, identify primitives corresponding
to the expression of the attributes and composition and associate models for
each target implementation. The methodology involved in deriving models
within the space defined by Attributes, Compositions and Parameters forms
the AntiCiPate framework. Although not described in this short report,
SCaLeM and AntiCiPate allow for an unambigiguous definition of what an
execution model is and a quantitative distinction from other execution mod-
els cast within this framework. Once the parameters have been quantified,

5



runtime behavior of applications written using an execution model can be
validated on current systems. The validated models can then be analyzed in
terms of their sensitivity to various parameters on future systems and future
incarnations of the execution model of choice. A graphical representation of
this process is given by Figure 1.

The practical usefulness of specific execution models in solving exascale
problems depends on the degree of difficulty (or ease) with which extreme-
scale applications can be written using them, and the extent of our un-
derstanding in realizing these execution models on the target architectures.
Alternatively, an exascale system architecture should efficiently support the
most promising execution models. Our framework enables comparative anal-
ysis of and reasoning about execution models in answering these questions.
Attributes and compositions help identify the similarities and differences be-
tween execution models at a quick glance. An execution model can be easily
supported on a target system if the approaches to effectively implementing
its key components are well understood. A group of closely related execution
models can be supported on a given system architecture with much greater
ease, and possibly lower cost, than diverse models.

We are in the process of cataloging the key properties of execution mod-
els such as the ones listed above, and mapping them to the SCaLeM at-
tributes and their compositions. The primitives in representative program-
ming models for each execution model (e.g., MPI for CSP) are mapped to
the parameters, which are then modeled using the AntiCiPate framework.
As application modules are available on each execution model of interest, we
are working towards modeling their behavior and analyzing their sensitivity
to changes in the parameters.

4 Application Descriptions and Modeling Re-

sults

In this section, we introduce one example of an application that has been
studied: GTC. Further, we describe modeled results that have been obtained
and a brief sensitivity analysis in which application performance impact due
to changes in the costs associated with SCaLeM compositions is quantified.

Gyrokinetic Toroidal Code (GTC)
GTC is a 3-dimensional code used to study microturbulence in magnet-

ically constrained toroidal fusion plasmas. GTC is a particle-in-cell code
which solves equations describing the evolution of a system of particles un-

6



der the effects of self-consistent electromagnetic fields. The unknown in these
equations is the flux, which is a function of time, location, and particle ve-
locity and represents the distribution function of particles in phase space.
The normal mode of operation for GTC is weak-scaling, where the number
of particles per process is configurable and is an input parameter into the
application model. Figure 2 depicts both measured vs. modeled application

0	
  

1	
  

2	
  

3	
  

4	
  

5	
  

6	
  

7	
  

8	
  

1	
   10	
   100	
   1000	
   10000	
  

Ite
ra
&o

n	
  
Ti
m
e	
  
(s
)	
  

Core	
  Count	
  

Modeled	
  

Measured	
  

(a) Model validation (b) Breakdown of modeled runtime

Figure 2: GTC Model Results

performance on an AMD Opteron cluster connected via InfiniBand and a
breakdown of modeled performance in terms of the compositions defined by
the SCaLeM framework. From Figure 2(a), it can be seen that the GTC
application model developed is quite accurate, showing an error of less than
5% to 1,024 cores. Interestingly, the execution time can be seen to reach a
peak at 64 cores before flattening again (runtime actually increases slightly
at larger scales due to collective MPI operations called during execution).
This is caused by TLB miss penalties; up to 64 cores, the toroidal tokamak
domain is partitioned using a one-dimensional radial method. Critical data
structures are accessed using a strided pattern in which the stride is depen-
dent on the number of radial partitions. As this stride grows, page faults and
resulting TLB miss penalties have a major impact on performance. Beyond
64 cores, the partitioning method expands along an orthogonal dimension,
limiting the impact on performance. Figure 2(b) shows the breakdown of the
modeled GTC performance and indicates the relative cost of local memory
access (including TLB miss penalty) increases to 64 cores (shown by F (C,L),
since it has aspects of both locality and memory attributes). At larger scales,
local memory access represents less of an impact on overall application per-
formance; however the cost of interprocessor synchronization, represented by
all MPI communication operations, increases (shown by F (C, S), since it has
aspects of both concurrency and synchronization attributes). This cost will
continue to increase with scale due to the presence of global synchronization
operations.

7



98%	
  

100%	
  

102%	
  

104%	
  

106%	
  

108%	
  

110%	
  

112%	
  

114%	
  

1	
   10	
   100	
   1000	
   10000	
  

Re
la
%v

e	
  
Pe

rf
or
m
an

ce
	
  

Core	
  Count	
  

Improve	
  20%	
  

Improve	
  40%	
  

Improve	
  60%	
  

Improve	
  80%	
  

100%	
  

100%	
  

101%	
  

101%	
  

102%	
  

102%	
  

103%	
  

103%	
  

1	
   10	
   100	
   1000	
   10000	
  

Re
la
%v

e	
  
Pe

rf
or
m
an

ce
	
  

Core	
  Count	
  

Improve	
  20%	
  

Improve	
  40%	
  

Improve	
  60%	
  

Improve	
  80%	
  

(a) GTC sensitivity to F (C,L) (b) GTC sensitivity to F (C, S)

Figure 3: Modeled Sensitivity Analysis

Sensitivity Analysis
Given a validated and trusted performance model, it is then possible to

quantify the impact on overall application performance caused by variations
in the cost of each SCaLeM composition. Ultimately, this will be extended
to provide a mapping between two distinct execution models. However, sev-
eral caveats exist which preclude undertaking such an activity blindly: in
particular, it must be noted that the execution model imposes constraints on
any given algorithm and its implementation. By moving from one execution
model to another, the algorithms which comprise the application will not
remain constant and, in some cases, the application must be fundamentally
reworked.

Figure 3 depicts the modeled performance impact of varying the cost
of the F (C,L) and F (C, S) compositions on the GTC application. This
application shows a greater sensitivity to the F (C,L) composition, resulting
from a sensitivity to intra-node memory contention.

5 Conclusions and Future Work

The next steps in the modeling work require modeling applications that are
not implemented in the CSP execution model. Ideally, the modeling method-
ology we have developed and implemented will be applicable to any applica-
tion implemented on any execution model. However, it is necessary to ensure
that the techniques employed capture all of the salient features of an appli-
cation executing on any software platform, and that features provided by
the hardware/software stack map to attributes and compositions defined by
SCaLeM. Furthermore, although we have described results that apply only to
performance, the methodology described and employed should be applicable
to any metric of interest (e.g., power/energy and reliability).

Once experience has been gained in modeling non-CSP execution models,

8



the goal is to use modeling methods to map applications between execution
models. Models will be the tool that allows for quantitative comparison
between execution models on hardware platforms of varying capability. As
mentioned, this necessarily implies that applications and algorithms will un-
dergo fundamental changes, which may not be predicted by a model. How-
ever, through experience and reasoning about how an application will utilize
hardware and execution model features, an application-specific model will be
able to capture these changes.

To facilitate the characterization of more execution models, rules for the
construction of each of the compositions and the attributes will be formalized.
Moreover, the mapping operations and parameter’s cost functions will be
expanded to include more architecture configurations.

This report has shown the SCaLeM and AntiCiPate framework used to
characterize execution models qualitatively and quantitatively. Concepts like
attributes, compositions, and architectural / system parameters were intro-
duced. Finally an example application and execution model were selected
and analyzed on this framework.. Using these types of modeling frameworks,
next generation systems can be designed with all aspects of the computation
spectrum in mind such that the maximum performance can be extracted.

References

[1] Kevin Barker, Daniel Chavarria, Adolfy Hoisie, Darren Kerbyson, Joseph
Manzano, Vishnu. Abhinav, Matthew Anderson, and Thomas Sterling.
Modeling execution models, 2012.

[2] Hartmut Kaiser, Maciek Brodowicz, and Thomas Sterling. Parallex an
advanced parallel execution model for scaling-impaired applications. In
Proceedings of the 2009 International Conference on Parallel Processing
Workshops, ICPPW ’09, pages 394–401, Washington, DC, USA, 2009.
IEEE Computer Society.

[3] Thomas Sterling. Doe abstract models for exascale computing, 2011.

9


