Resilience Panel

Resilience in the X-Stack With a special look at Tools

Martin Schulz

Lawrence Livermore National Laboratory

X-Stack 2 PI-Meeting • May 29th, 2014

http://scalability.llnl.gov/

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

How Does Resilience Fit into the X-Stack?

- What features of other levels of X-Stack should resilience depend on?
 - No single level can cover resilience alone
 - Recover what you can at each level, but every layer needs to be able to
 - Be able to report failures up
 - Be able to accept failure being handed up
 - Need for integration / coordination across layers -> clean failure semantics
- How can resilience schemes best exploit application, RT, or PM semantics?
 - Semantics that defines locality can help determine impact
 - · Identify tainted regions, recovery needs, dependencies, ...
- What is missing from any layer to make resilience schemes succeed?
 - Information interfaces that allow root cause analysis
 - Clean failure propagation semantics
 - Recovery and clean-up hooks
- What is the impact on resilience of the wide range of expected scenarios?
 - Traditional models with strict SPMD semantics are harder
 - New models are a large step forward
 - If applications can deal with changing resources, they can deal with resilience
 - Question: can we get there with legacy applications?

A Practical and Holistic View on Resilience

Vertical integration

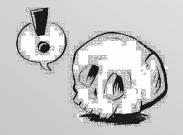
- Failure information must be able to travel up the stack
- Programming models must expose locality and containment
- Clean-up hooks in case of failures would be helpful for local recovery

Balance between machine and application view

- We can't let applications deal with all failures and reduced resources
 - Just saying "there is a failure, deal with it" won't work
- We can't hide failures from applications completely
 - We won't end up with a full "runtime will fix it" approach

Close interaction with resource managers needed

- Recovery of resources if possible
- External constraints will impact recovery actions



Resilience from the Tools Perspective

- Resilience impacts the functionality of performance tools
 - Transparent failure detection & recovery acts basically as a noise event
 - Performance measurements become unreliable or invalid
 - Resilience events can cause ripple effects

- To show it or Not to show it, that is the question!
 - Tools need to show "clean" performance measurements
 - Tools need to show that something went wrong
- Need for a new set of tools specifically for resilience
 - Analyze the impact and source of failures
 - Understand the impact of recovery
- Even if you think you have everything covered, don't forgot to pay the PIPER!

