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Created by von Eicken et al, for 
Split-C (1992)
Messages sent explicitly
Receivers register handlers but 
are not involved with individual 
messages
Messages typically 
asynchronous for higher 
throughput
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Process	1 Process	2
Highly asynchronous

Communication implicit on 
receiver
Less waiting for all nodes to 
reach same location
Messages sent in background 
while work continues

Allows compound actions with 
one message

Generalization of PGAS remote 
atomic operations
Fixed set of remote operations is 
not efficient

Complicated updates cannot be 
done with fetch-and-X or 
compare-and-swap



Find the Sequential Trap

ENQUEUE(Q, s)
while (Q 6= ;)
u DEQUEUE(Q)
for (each v 2 Adj[u])
if (color[v] = WHITE)
color[v] GRAY
ENQUEUE(Q, v)

else color[u] BLACK



Find the Synchronization Trap

ENQUEUE(Q, s)
while (Q 6= ;)
u DEQUEUE(Q)
for (each v 2 Adj[u])
if (color[v] = WHITE)
color[v] GRAY
ENQUEUE(Q, v)

else color[u] BLACK

for i in ranks:	start	receiving	in_queue[i]	from rank	i
for j in ranks:	start	sending	out_queue[j]	to rank j
synchronize	and	finish	communications



Rank 0 Rank 1 Rank 2 Rank 3

Get 
neighbors

Redistribute 
queues

Combine 
received 
queues

BSP Breadth-First Search
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Graph algorithms: Commonalities
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Very fine-grained task graph
Some “inner loop” data parallelism
Lots of small memory accesses and messages à latency bound

How do we deal with latency? à Asynchrony

discovered at runtime



Data	parallel
Coarse	grained
Regular	/	local
Synchronous
Bandwidth	bound
Static

Task	parallel
Fine	grained
Irregular	/	non-local
Asynchronous
Latency	bound
Dynamic

HPL
PDE	Solvers

Graph	
Traversal

Adaptive
Mesh

Refinement

Subgraph
Isomorphism

Sparse	Linear
Algebra

Graph algorithms: A range of execution patterns
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BSP Algorithms: Moving Data to Control Flow
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Perform remote data access
Barrier
Use received data
Barrier
Full network RTT on every message
Data reuse unlikely
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Active Messages: Controlling Resource 
Utilization
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Traditional scientific computing applications
Neighborhood communication
Large ratio of local to remote data
Spatial and temporal locality à data reuse
Satisfy computational dependencies by moving data to control flow (e.g., 
ghost cells)

Graph applications
Poor partitions à everything is a boundary value
Minimal data reuse
Memory requirements

Difficult to compute a priori
Asymptotically large
Average case is often much more reasonable



Why Active Messages: Expressiveness
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Capable of capturing both data parallelism and task parallelism
Preserve full computational dependency information until runtime

No artificial dependencies
No static coarsening

Unified data and control flow
Richer semantics than RDMA
Uniformity of access

Some loss of S/W modularity
and conceptual integrity

to

Network

to

to

Process YProcess X

to

Network

to

to

to

Process YProcess X



Graph Algorithms: Moving Control Glow to 
Data
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Asynchronous, no sender-side 
state (fire and forget)
½ RTT in some cases
Asynchrony hides latency
No additional (static) storage for 
non-local data

Messages need to be buffered
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Why active messages: Efficiency
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Fine-grained messages expose maximal parallelism and asynchrony
Likely excessive overhead in naïve implementation

Separates optimization from algorithm expression
Leverage knowledge of input graph at runtime

Control resource utilization at runtime
Reduce global synchronization vs. two-sided messaging



Architectur
e)diagram)
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Message coalescing
Amortize overhead
Avoid network injection rate limits

Message reductions
Cache properties of non-local 
objects 
Eliminate redundant computation
Distributed computation into 
network

Active routing
Exploit physical topology
Reduce memory consumed by 
communication buffers
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Results: Software Routing
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Coalescing buffers limit scalability
Communications typically all-to-all

Impose a limited topology with fewer neighbors
Better scalability, higher latency, higher bandwidth



Results: BSP vs. Active Messages
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How often do we: communicate? synchronize?
Can we act on the communicated data as soon as it is received?
False choice à AM specification can become BSP at runtime

The AM and BSP results presented here were generated using the same 
algorithm specification and runtime
BSP basically amounts to turning off asynchronous message execution 
and (largely) the overlap of communication and computation

TimeAlgorithm start
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Active Pebbles / AM++

Programming and execution model
Programming model allows natural expression of algorithms using active 
messages
Execution model makes it run efficiently

For fine-grained algorithms with many tiny messages
No artificial coarsening needed
Adds latency to obtain higher
throughput

Realized in AM++ library

MPI or Vendor Communication Library

AM++ Transport

Message
Type

Message
Type

Coalescing

Reductions

User

Message
Type

Coalescing

Epoch

TD Level

Termination
Detection



Programming Model

Program with natural granularity
Transparent addressing

Targets can be arbitrary
User-defined data
distributions

Static and dynamic
Self-sends do not need
to be detected manually

Epoch model
Enforces message delivery
Handlers can be recursive

v

Rank&0& Rank&1& Rank&2& Rank&3& Rank&4&

Target&space&

Color&

bfs_explore(v).{.
..color[v].=.black.
..for.all.neighbors.u.of.v.
....bfs_explore(v).
}.

dfs_explore(u,.v,.flag).{.
.if.all.neighbors.of.v.are.black..
..................and.v.≠.source.
....dfs_explore(v,.u,.UP).
.else.for.each.neighbor.w.of.v.
....dfs_explore(v,.w,.DOWN).
}.
.



GMT – Global Memory and Threading

Partitioned Global Address Space (PGAS) data model
Lightweight software multithreading to hide latency of remote 
operations
Asynchronous user level task parallelism 

Loop level parallelism (parFor)
Support for active messages

Execute “on data” (using the PGAS)
Execute “on node” (currently defined through MPI ranks)

Two-level message aggregation
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Message aggregation

Two-level aggregation
Queues are per destination 
node

Command blocks
“local” to a core

Aggregation queue
Common to a node

Aggregation buffers
Buffers where data are 
effectively copied before the 
MPI send operation
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Q&A

What standard interfaces can you layer on top of? MPI, PGAS, UCX, 
…

Both GMT and AM++ are layered on MPI
In theory, active messages could be implemented with PGAS, put with 
completion, …

Granularity requirements
“Natural” level at application level, coalescing etc. in the runtime

Need for helper threads at source and target, and whether those can 
be explicitly managed

GMT has helper threads, AM++ does not
How should work related to active messages be layered, i.e., what 
should be done about the HiHAT User Layer, what done by 
implementation below User Layer (e.g. code that needs to do setup, 
make trade-offs) but above Common Layer, and what part should be 
below Common Layer (e.g. code to map to specific transports)?July 18, 2017 21



Conclusions

Active Messages
are lightweight
move control flow to data
are asynchronous
allow fine granularity
allow a wide range of optimizations at runtime
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Discussion

User interface layered above HiHAT
App can use MPI or SHMEM to set up its own receive code in some other 
rank/PE
MPI or SHMEM could be used directly, outside of HiHAT, for inter-rank/PE 
comms, and we can consider switching to using HiHAT for comms if/when it 
adds cross-rank support. We’re trying to avoid “competition” over resources 
between HiHAT and other comms mechanisms, so are starting with a HiHAT
within rank and MPI/whatever between ranks approach.
MPI/SHMEM/whatever comms do want to be integrated into HiHAT’s
dependence system, so that actions that get enabled upon the arrival of data 
can be async’ly enqueued and can execute when ready, vs. having to 
block/poll until data arrives before enqueuing.
Any special requirements

Receiver thread wants async user-level wakeup signaling vs. block/sleep/OS 
thread wakeup or poll
Ordering requirements, like fence or quiet
Working data arrival notification into HiHAT’s dependence management system

July 18, 2017 23



GMT architecture

Three classes of pthreads
(pinned to cores)

Worker
Executes application code 
through lightweight tasks

Helper
PGAS and communication 
management

Communication Server
MPI communication

July 14, 2017 24



Put/Get With Completion: Even Lighter 
Active Messages
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Results: Runtime message reductions
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