
Active Messages

Active Messages

July 18, 2017 2

Created by von Eicken et al, for
Split-C (1992)
Messages sent explicitly
Receivers register handlers but
are not involved with individual
messages
Messages typically
asynchronous for higher
throughput

Send

Message	
handler

Reply

Reply	
handler

Tim
e

Process	1 Process	2

Active Messages

July 18, 2017 3

Send

Message	
handler

Reply

Reply	
handler

Tim
e

Process	1 Process	2
Highly asynchronous

Communication implicit on
receiver
Less waiting for all nodes to
reach same location
Messages sent in background
while work continues

Allows compound actions with
one message

Generalization of PGAS remote
atomic operations
Fixed set of remote operations is
not efficient

Complicated updates cannot be
done with fetch-and-X or
compare-and-swap

Find the Sequential Trap

ENQUEUE(Q, s)
while (Q 6= ;)
u DEQUEUE(Q)
for (each v 2 Adj[u])
if (color[v] = WHITE)
color[v] GRAY
ENQUEUE(Q, v)

else color[u] BLACK

Find the Synchronization Trap

ENQUEUE(Q, s)
while (Q 6= ;)
u DEQUEUE(Q)
for (each v 2 Adj[u])
if (color[v] = WHITE)
color[v] GRAY
ENQUEUE(Q, v)

else color[u] BLACK

for i in ranks:	start	receiving	in_queue[i]	from rank	i
for j in ranks:	start	sending	out_queue[j]	to rank j
synchronize	and	finish	communications

Rank 0 Rank 1 Rank 2 Rank 3

Get
neighbors

Redistribute
queues

Combine
received
queues

BSP Breadth-First Search

6

Graph algorithms: Commonalities

7

Very fine-grained task graph
Some “inner loop” data parallelism
Lots of small memory accesses and messages à latency bound

How do we deal with latency? à Asynchrony

discovered at runtime

Data	parallel
Coarse	grained
Regular	/	local
Synchronous
Bandwidth	bound
Static

Task	parallel
Fine	grained
Irregular	/	non-local
Asynchronous
Latency	bound
Dynamic

HPL
PDE	Solvers

Graph	
Traversal

Adaptive
Mesh

Refinement

Subgraph
Isomorphism

Sparse	Linear
Algebra

Graph algorithms: A range of execution patterns

8

BSP Algorithms: Moving Data to Control Flow

9

Perform remote data access
Barrier
Use received data
Barrier
Full network RTT on every message
Data reuse unlikely

Process 0

Process 1 Process 2

a b

c

h

g
i

d
f

e

Process 0

Process 1 Process 2

a 1

b 6

c 3

d 2

e 8

f 5

g 3

h 4

i 5

a b

c

h

g
i

d
f

e

Process 0

Process 1 Process 2

a 1

b 6

c 3

d 2

e 8

f 5

g 3

h 4

i 5

d 2

a 1

c 3

h 4

b 6

c 3

a b

c

h

g
i

d
f

e

Process 0

Process 1 Process 2

a 1

b 6

c 3

d 2

e 8

f 5

g 3

h 4

i 5

d 2

a 1

c 3

h 4

b 6

c 3

a b

c

h

g
i

d
f

e• Memory Utilization
• Synchronization
• Latency
• Split data and control flow

Active Messages: Controlling Resource
Utilization

10

Traditional scientific computing applications
Neighborhood communication
Large ratio of local to remote data
Spatial and temporal locality à data reuse
Satisfy computational dependencies by moving data to control flow (e.g.,
ghost cells)

Graph applications
Poor partitions à everything is a boundary value
Minimal data reuse
Memory requirements

Difficult to compute a priori
Asymptotically large
Average case is often much more reasonable

Why Active Messages: Expressiveness

11

Capable of capturing both data parallelism and task parallelism
Preserve full computational dependency information until runtime

No artificial dependencies
No static coarsening

Unified data and control flow
Richer semantics than RDMA
Uniformity of access

Some loss of S/W modularity
and conceptual integrity

to

Network

to

to

Process YProcess X

to

Network

to

to

to

Process YProcess X

Graph Algorithms: Moving Control Glow to
Data

12

Asynchronous, no sender-side
state (fire and forget)
½ RTT in some cases
Asynchrony hides latency
No additional (static) storage for
non-local data

Messages need to be buffered

Process 0

Process 1 Process 2

a 1

b 1

c 2

d 1

e 2

f 2

g 3

h 3

i 4

a b

c

h

g
i

d
f

e

f(g) (if g < 2 then c = g)

Why active messages: Efficiency

13

Fine-grained messages expose maximal parallelism and asynchrony
Likely excessive overhead in naïve implementation

Separates optimization from algorithm expression
Leverage knowledge of input graph at runtime

Control resource utilization at runtime
Reduce global synchronization vs. two-sided messaging

Architectur
e)diagram)

P0 P1

P2 P3

0 1

F

table.insert(0, F)

table.insert(6, D)

4 5

table.insert(7,B)

table.insert(6,A)
7 B

6 A

6 D
2 3

table.insert(6,A)

table.insert(...)

6 A6 D

6 D A

6 7

table.insert(4,A)

table.insert(4,B)

4 B A

MULTI-SOURCE REDUCTION

SINGLE-SOURCE REDUCTION

COALESCING

HYPERCUBE
ROUTING

Runtime Optimization

14

Message coalescing
Amortize overhead
Avoid network injection rate limits

Message reductions
Cache properties of non-local
objects
Eliminate redundant computation
Distributed computation into
network

Active routing
Exploit physical topology
Reduce memory consumed by
communication buffers

P0 P2P1 P3

P4 P7

P8 P11

P12 P13 P14 P15

P9 P10

P6P5

P0 P2P1 P3

P4 P5 P6 P7

P8 P10P9 P11

P12 P13 P14 P15

1411

11

14
1411

1411

11

14

Multi-source coalescing

Results: Software Routing

15

Coalescing buffers limit scalability
Communications typically all-to-all

Impose a limited topology with fewer neighbors
Better scalability, higher latency, higher bandwidth

Results: BSP vs. Active Messages

16

How often do we: communicate? synchronize?
Can we act on the communicated data as soon as it is received?
False choice à AM specification can become BSP at runtime

The AM and BSP results presented here were generated using the same
algorithm specification and runtime
BSP basically amounts to turning off asynchronous message execution
and (largely) the overlap of communication and computation

TimeAlgorithm start

Ra
nk
s

Ra
nk
s

Active Pebbles / AM++

Programming and execution model
Programming model allows natural expression of algorithms using active
messages
Execution model makes it run efficiently

For fine-grained algorithms with many tiny messages
No artificial coarsening needed
Adds latency to obtain higher
throughput

Realized in AM++ library

MPI or Vendor Communication Library

AM++ Transport

Message
Type

Message
Type

Coalescing

Reductions

User

Message
Type

Coalescing

Epoch

TD Level

Termination
Detection

Programming Model

Program with natural granularity
Transparent addressing

Targets can be arbitrary
User-defined data
distributions

Static and dynamic
Self-sends do not need
to be detected manually

Epoch model
Enforces message delivery
Handlers can be recursive

v

Rank&0& Rank&1& Rank&2& Rank&3& Rank&4&

Target&space&

Color&

bfs_explore(v).{.
..color[v].=.black.
..for.all.neighbors.u.of.v.
....bfs_explore(v).
}.

dfs_explore(u,.v,.flag).{.
.if.all.neighbors.of.v.are.black..
..................and.v.≠.source.
....dfs_explore(v,.u,.UP).
.else.for.each.neighbor.w.of.v.
....dfs_explore(v,.w,.DOWN).
}.
.

GMT – Global Memory and Threading

Partitioned Global Address Space (PGAS) data model
Lightweight software multithreading to hide latency of remote
operations
Asynchronous user level task parallelism

Loop level parallelism (parFor)
Support for active messages

Execute “on data” (using the PGAS)
Execute “on node” (currently defined through MPI ranks)

Two-level message aggregation

July 14, 2017 19

Message aggregation

Two-level aggregation
Queues are per destination
node

Command blocks
“local” to a core

Aggregation queue
Common to a node

Aggregation buffers
Buffers where data are
effectively copied before the
MPI send operation

July 14, 2017 20

Q&A

What standard interfaces can you layer on top of? MPI, PGAS, UCX,
…

Both GMT and AM++ are layered on MPI
In theory, active messages could be implemented with PGAS, put with
completion, …

Granularity requirements
“Natural” level at application level, coalescing etc. in the runtime

Need for helper threads at source and target, and whether those can
be explicitly managed

GMT has helper threads, AM++ does not
How should work related to active messages be layered, i.e., what
should be done about the HiHAT User Layer, what done by
implementation below User Layer (e.g. code that needs to do setup,
make trade-offs) but above Common Layer, and what part should be
below Common Layer (e.g. code to map to specific transports)?July 18, 2017 21

Conclusions

Active Messages
are lightweight
move control flow to data
are asynchronous
allow fine granularity
allow a wide range of optimizations at runtime

July 14, 2017 22

Discussion

User interface layered above HiHAT
App can use MPI or SHMEM to set up its own receive code in some other
rank/PE
MPI or SHMEM could be used directly, outside of HiHAT, for inter-rank/PE
comms, and we can consider switching to using HiHAT for comms if/when it
adds cross-rank support. We’re trying to avoid “competition” over resources
between HiHAT and other comms mechanisms, so are starting with a HiHAT
within rank and MPI/whatever between ranks approach.
MPI/SHMEM/whatever comms do want to be integrated into HiHAT’s
dependence system, so that actions that get enabled upon the arrival of data
can be async’ly enqueued and can execute when ready, vs. having to
block/poll until data arrives before enqueuing.
Any special requirements

Receiver thread wants async user-level wakeup signaling vs. block/sleep/OS
thread wakeup or poll
Ordering requirements, like fence or quiet
Working data arrival notification into HiHAT’s dependence management system

July 18, 2017 23

GMT architecture

Three classes of pthreads
(pinned to cores)

Worker
Executes application code
through lightweight tasks

Helper
PGAS and communication
management

Communication Server
MPI communication

July 14, 2017 24

Put/Get With Completion: Even Lighter
Active Messages

July 14, 2017 25

Process 0

Process 1 Process 2

a b

c

h

g
i

d
f

e

Process 0

Process 1 Process 2

a b

c

h

g
i

d
f

e

explore(b, 1)

explore(b, 1)

Process 0

Process 1 Process 2

explore(h, 2)

explore(h, 3)

a b

c

h

g
i

d
f

e

Results: Runtime message reductions

26

