DSL's: Difference between revisions
From Modelado Foundation
imported>Schulzm No edit summary |
imported>Saman (Added Rely Entry (SM)) |
||
Line 86: | Line 86: | ||
| | | | ||
|- style="vertical-align:top;" | |- style="vertical-align:top;" | ||
|'' | |''D-TEC | ||
| | | Rely | ||
| | | http://groups.csail.mit.edu/pac/rely/ | ||
| | | Reliability-aware computing and Approximate computing | ||
| | | Internal kernels | ||
| | | Subset of C with additional reliability annotations | ||
| | | Custom IR | ||
| | |A language and a static analysis framework for verifying reliability of programs given function-level reliability specifications. Chisel, a code transformation tool built on top of Rely, automatically selects operations that can execute unreliably with minimum resource consumption, while satisfying the reliability specification. | ||
| | | Generates C source code. Binary code generator implementation is in progress | ||
| | | - | ||
| | | Implementation in progress | ||
| Analysis of computational kernels from multimedia and scientific applications. | |||
| | | | ||
| | | |
Revision as of 19:53, May 7, 2014
Sonia requested that Saman Amarasinghe and Dan Quinlan initiate this page. For comments, please contact them. This page is still in development.
X-Stack Project | Name of the DSL | URL | Target domain | Miniapps supported | Front-end technology used | Internal representation used | Key Optimizations performed | Code generation technology used | Processors computing models targeted | Current status | Summary of the best results | Interface for perf.&dbg. tools | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
D-TEC | Halide | http://halide-lang.org | Image processing algorithms | Cloverleaf, miniGMG, boxlib | Uses C++ | Custom IR | Stencil optimizations (fusion, blocking, parallelization, vectorization) Schedules can produce all levels of locality, parallelism and redundant computation. OpenTuner for automatic schedule generation. | LLVM | X86 multicores, Arm and GPU | Working system. Used by Google and Adobe. | Local laplacian filter: Adobe top engineer took 3 months and 1500 loc to get 10x over original. Halide in 1-day, 60 lines 20x faster. In addition 90x faster GPU code in the same day (Adobe did not even try GPUs). Also, all the pictures taken by google glass is processed using a Halide pipeline. | ||
DTEC | Shared Memory DSL | http://rosecompiler.org | MPI HPC applications on many core nodes | Internal LLNL App | Uses C (maybe C++ and Fortran in future) | ROSE IR | Shared memory optimization for MPI processes on many core architectures permits sharing large data structures between processes to reduce memory requirements per core. | ROSE + any vendor compiler | Many core architectures with local shared memory | Implementation released (4/28/2014) | Being evaluated for use | ||
D-TEC | Heterogeneous OpenMP | http://rosecompiler.org/ | HPC applications running on NVIDIA GPUs | boxlib, internal kernels | Uses C and C++ | ROSE IR (AST) | loop collapse to expose more parallelism, Hardware-aware thread/block configuration, data reuse to reduce data transfer, round-robin loop scheduling to reduce memory footprint | ROSE source-to-source + NVIDIA CUDA compiler | NVIDIA GPUs | Implementation released with ROSE (4/29/2014) | Matches or outperforms caparable compilers targeting GPUs. | ||
D-TEC | NUMA DSL | http://rosecompiler.org | HPC applications on NUMA-support many core CPU | internal LLNL App | Uses C++ | ROSE IR | NUMA-aware data distribution to enhance data locality and avoid long memory latency. Multiple halo exchanging schemes for stencil codes using structured grid. | ROSE + libnuma support | Many core architecture with NUMA hierarchy | implementation in progress. | 1.7x performance improvement compared to OpenMP implementation for 2D 2nd order stencil computation. | ||
D-TEC | OpenACC | https://github.com/tristanvdb/OpenACC-to-OpenCL-Compiler | Accelerated computing | Not yet. | C (possible C++ and Fortran). Pragma parser for ROSE. | ROSE IR | Uses on tiling to map parallel loops to OpenCL | ROSE (with OpenCL kernel generation backend), OpenCL C Compiler (LLVM) | Any accelerator with OpenCL support (CPUs, GPUs, XeonPhi, ...) | - Basic kernel generation - Directives parsing - Runtime tested on Nividia GPUs, Intel CPUs, and Intel XeonPhi | Reaches ~50 Gflops on Tesla M2070 on matrix multiply. (M2070: ~1Tflops peaks, ~200 to ~400 Gflops effective on linear algebra ; all floating point). | ||
D-TEC | Rely | http://groups.csail.mit.edu/pac/rely/ | Reliability-aware computing and Approximate computing | Internal kernels | Subset of C with additional reliability annotations | Custom IR | A language and a static analysis framework for verifying reliability of programs given function-level reliability specifications. Chisel, a code transformation tool built on top of Rely, automatically selects operations that can execute unreliably with minimum resource consumption, while satisfying the reliability specification. | Generates C source code. Binary code generator implementation is in progress | - | Implementation in progress | Analysis of computational kernels from multimedia and scientific applications. | ||
DSL 7 | |||||||||||||
DSL 8 |